माना $R$ पर परिभाषित कोई फलन $f$ है तथा माना यह $|f( x )-f( y )| \leq\left|( x - y )^{2}\right|, \forall( x , y ) \in R$ को संतुष्ट करता है। यदि $f(0)=1$ है, तो
$f( x ), R$ में कोई भी मान ले सकता है
$f(x)< 0, \forall \,x \in R$
$f( x )=0, \forall \, x \in R$
$f( x )>0, \forall \, x \in R$
फलन$f(x) = x(x + 3){e^{ - (1/2)x}}$ रोले प्रमेय की सभी शर्तों को $[-3, 0] $ में सन्तुष्ट करता है। $c$ का मान है
यदि $f(x) = \cos x,0 \le x \le \frac{\pi }{2}$, तो मध्यमान प्रमेय की वास्तविक संख्या $ ‘c’$ है
फलन $f(x)$ मध्यमान प्रमेय की सभी शर्तो को अंतराल $ [0, 2] $ में सन्तुष्ट करता है। यदि $ f (0) = 0 $ और अंतराल $ [0, 2] $ में $x $ के सभी मानों के लिये $|f'(x)|\, \le \frac{1}{2}$, तब
यदि फलन $f(x)=2 x^{3}+ a x^{2}+ b x$ के लिए अंतराल $[-1,1]$ में बिंदु $c =\frac{1}{2}$ पर रोले का प्रमेय लागू है, तो $2 a + b$ का मान है
फलन $x + \frac{1}{x},x \in [1,\,3]$ के लिए मध्यमान प्रमेय में $c$ का मान है