जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?
$f(x)=x^{2}-1$ के लिए $x \in [1,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=x^{2}-1$ for $x \in[1,2]$
It is evident that $f$, being a polynomial function, is continuous in $[1,2]$ and is differentiable in $(1,2).$
$f(1)=(1)^{2}-1=0$
$f(2)=(2)^{2}-1=3$
$\therefore f(1) \neq f(2)$
It is observed that $f$ does not satisfy a condition of the hypothesis of Roller's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2].$
माना कोई फलन $f$ अंतराल $[0,2]$ में संतत है तथा $(0,2)$ में दो बार अवकलनीय है। यदि $f (0)=0$, $f(1)=1$ तथा $f(2)=2$, हैं, तो
यदि फलन $f(x)=2 x^{3}+ b x^{2}+ c x, x \in[-1,1]$ के लिए बिंदु $x=\frac{1}{2}$ पर रोले का प्रमेय लागू होता है, तो $2 b + c$ बराबर है
यदि फलन $f(x) = {x^3} - 6{x^2} + ax + b$ रौले प्रमेय को अंतराल $[1,\,3]$ में संतुष्ट करता है और $f'\left( {\frac{{2\sqrt 3 + 1}}{{\sqrt 3 }}} \right) = 0$, तब $a =$ ..............
फलन $f(x) = {e^x},a = 0,b = 1$ के लिए मध्यमान प्रमेय में $c$ का मान होगा
माना $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ एक परिवर्तनीय तथा दो बार अवकलनीय फलन है और $\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$ है यदि एक वास्तविक मान फलन $\mathrm{f}(\mathrm{x})=\frac{1}{2}[\mathrm{~g}(\mathrm{x})+\mathrm{g}(2-\mathrm{x})]$, द्वारा परिभाषित है, तो :