जाँच कीजिए कि क्या रोले का प्रमेय निम्नलिखित फलनों में से किन-किन पर लागू होता है। इन उदाहरणों से क्या आप रोले के प्रमेय के विलोम के बारे में कुछ कह सकते हैं?
$f(x)=x^{2}-1$ के लिए $x \in [1,2]$
By Rolle's Theorem, for a function $f:[a, b] \rightarrow R,$ if
a) $f$ is continuous on $[a, b]$
b) $f$ is continuous on $(a, b)$
c) $f(a)=f(b)$
Then, there exists some $c \in(a, b)$ such that $f^{\prime}(c)=0$
Therefore, Rolle's Theorem is not applicable to those functions that do not satisfy any of the three conditions of the hypothesis.
$f(x)=x^{2}-1$ for $x \in[1,2]$
It is evident that $f$, being a polynomial function, is continuous in $[1,2]$ and is differentiable in $(1,2).$
$f(1)=(1)^{2}-1=0$
$f(2)=(2)^{2}-1=3$
$\therefore f(1) \neq f(2)$
It is observed that $f$ does not satisfy a condition of the hypothesis of Roller's Theorem.
Hence, Roller's Theorem is not applicable for $f(x)=x^{2}-1$ for $x \in[1,2].$
यदि , अन्तराल $[1,\,2]$ में रौले प्रमेय को संतुष्ट करता है तथा $f(x)$ ,$[1,\,2]$ में सतत् है, तो $\int_1^2 {f'(x)dx} $ का मान है
यदि $f(x) = 2x - {x^2}$ के लिए अन्तराल $[0, 1]$ में लैगरांज प्रमेय सत्यापित है, तो $c$ का मान, जो कि $[0,\,1]$ में होगा, है
माध्यमान प्रमेय सत्यापित कीजिए यदि अंतराल $[a, b]$ में $f(x)=x^{3}-5 x^{2}-3 x,$ जहाँ $a=1$ और $b=3$ है। $f(c)=0$ के लिए $c \in(1,3)$ को ज्ञात कीजिए।
फलन $y=x^{2}+2$ के लिए रोले के प्रमेय को सत्यापित कीजिए, जब $a=-2$ तथा $b=2$ है।
इस प्रश्न में $[x]$ वह अधिकतम पूर्णांक है जो दी गयी वास्तविक संख्या $x$ से कम या बराबर है। दिये गए फलन $f(x)=[x] \sin \pi x$ पर विचार करें। निम्नलिखित में से कौन सा कथन उचित है: