5. Continuity and Differentiation
normal

उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________

A

$4$

B

$3$

C

$5$

D

$1$

(JEE MAIN-2023)

Solution

$y=x^5-20 x^3+50 x+2$

$\frac{d y}{d x}=5 x^4-60 x^2+50=5\left(x^4-12 x^2+10\right)$

$\frac{d y}{d x}=0 \Rightarrow x^4-12 x^2+10=0$

$\Rightarrow x^2=\frac{12 \pm \sqrt{144-40}}{2}$

$\Rightarrow x^2=6 \pm \sqrt{26} \Rightarrow x^2 \approx 6 \pm 5.1$

$\Rightarrow x^2 \approx 11.1,0.9$

$\Rightarrow x \approx \pm 3.3, \pm 0.95$

$f(0)=2, f(1)=+v e, f(2)=-ve$

$f(-1)=-v e, f(-2)=+v e$

Standard 12
Mathematics

Similar Questions

मान लीजिए कि $\psi_1:[0, \infty) \rightarrow R , \psi_2:[0, \infty) \rightarrow R , f:[0, \infty) \rightarrow R$ और $g :[0, \infty) \rightarrow R$ ऐसे फलन हैं कि

$f(0)=g(0)=0,$

$\psi_1( x )= e ^{- x }+ x , \quad x \geq 0,$

$\psi_2( x )= x ^2-2 x -2 e ^{- x }+2, x \geq 0,$

$f( x )=\int_{- x }^{ x }\left(|t|- t ^2\right) e ^{- t ^2} dt , x >0$

और

$g(x)=\int_0^{x^2} \sqrt{t} e^{-t} d t, x>0$

($1$) निम्न कथनों में से कौन सा सत्य है ?

$(A)$ $f(\sqrt{\ln 3})+g(\sqrt{\ln 3})=\frac{1}{3}$

$(B)$ प्रत्येक $x >1$ के लिए, एक ऐसा $\alpha \in(1, x )$ विद्यमान है जिसके लिए $\psi_1( x )=1+\alpha x$ है।

$(C)$ प्रत्येक $x >0$ के लिए, एक ऐसा $\beta \in(0, x )$ विद्यमान है जिसके लिए $\psi_2( x )=2 x \left(\psi_1(\beta)-1\right)$ है।

$(D)$ अंतराल $\left[0, \frac{3}{2}\right]$ में $f$ एक वर्धमान फलन (increasing function) है।

($2$) निम्न कथनों में से कौन सा सत्य है?

$(A)$ सभी $x >0$ के लिए, $\psi_1( x ) \leq 1$ है।

$(B)$ सभी $x >0$ के लिए, $\Psi_2( x ) \leq 0$ है।

$(C)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $f( x ) \geq 1- e ^{- x ^2}-\frac{2}{3} x ^3+\frac{2}{5} x ^5$ है।

$(D)$ सभी $x \in\left(0, \frac{1}{2}\right)$ के लिए, $g ( x ) \leq \frac{2}{3} x ^3-\frac{2}{5} x ^5+\frac{1}{7} x ^7$ है।

hard
(IIT-2021)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.