State whether the following are true or false. Justify your answer.
$\sin \theta=\cos \theta$ for all values of $\theta$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
Consider $\triangle ACB$, right-angled at $C$, in which $AB =29$ units, $BC =21$ units and $\angle ABC =\theta$ (see $Fig.$). Determine the values of
$(i)$ $\cos ^{2} \theta+\sin ^{2} \theta$
$(ii)$ $\cos ^{2} \theta-\sin ^{2} \theta$
Prove that $\frac{\cot A-\cos A}{\cot A+\cos A}=\frac{\operatorname{cosec} A-1}{\operatorname{cosec} A+1}$
$\frac{1+\tan ^{2} A}{1+\cot ^{2} A}=........$