$\cot 85^{\circ}+\cos 75^{\circ}$ को $0^{\circ}$ और $45^{\circ}$ के बीच के कोणों के त्रिकोणमितीय अनुपातों के पदों में व्यक्त कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cot 85^{\circ}+\cos 75^{\circ}$ $=\cot \left(90^{\circ}-5^{\circ}\right)+\cos \left(90^{\circ}-15^{\circ}\right)$

$=\tan 5^{\circ}+\sin 15^{\circ}$

Similar Questions

निम्नलिखित सर्वसमिका सिद्ध कीजिए, जहाँ वे कोण, जिनके लिए व्यंजक परिभाषित है, न्यून कोण है :

$\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}=\tan \theta$

$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$

त्रिकोणमितीय अनुपातों $\sin A , \sec A$ और $tan A$ को $cot A$ के पदों में व्यक्त कीजिए।

यदि $A , B$ और $C$ त्रिभुज $ABC$ के अंतःकोण हों, तो दिखाइए कि

$\sin \left(\frac{ B + C }{2}\right)=\cos \frac{ A }{2}$

यदि $\angle B$ और $\angle Q$ ऐसे न्यूनकोण हों जिससे कि $\sin B =\sin Q ,$ तो सिद्ध कीजिए कि $\angle B =\angle Q$