If $\cot \theta=\frac{7}{8},$ evaluate:
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$(ii)$ $\cot ^{2} \theta$
Let us consider a right triangle $ABC ,$ right-angled at point $B$.
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{B C}{A B}$
$=\frac{7}{8}$
If $B C$ is $7 k,$ then $A B$ will be $8 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8\, k)^{2}+(7\, k)^{2}$
$=64\, k^{2}+49\, k^{2}$
$=113 \,k^{2}$
$A C=\sqrt{113 k}$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$
$\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1-\sin ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)}$
$(i)$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{\frac{49}{113}}{\frac{64}{113}}=\frac{49}{64}$
$(ii)$ $\cot ^{2} \theta=(\cot \theta)^{2}=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$
State whether the following are true or false. Justify your answer.
The value of $\cos \theta$ increases as $\theta$ increases
If $\sin ( A - B )=\frac{1}{2}, \cos ( A + B )=\frac{1}{2}, 0^{\circ} < A + B \leq 90^{\circ}, A > B ,$ find $A$ and $B$
If $\tan A =\cot B ,$ prove that $A + B =90^{\circ}$
If $A , B$ and $C$ are interior angles of a triangle $ABC ,$ then show that
$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$
In $\triangle$ $OPQ$, right-angled at $P$, $OP =7\, cm$ and $OQ - PQ =1\, cm$ (see $Fig.$). Determine the values of $\sin Q$ and $\cos Q$.