If $\cot \theta=\frac{7}{8},$ evaluate:
$(i)$ $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$(ii)$ $\cot ^{2} \theta$
Let us consider a right triangle $ABC ,$ right-angled at point $B$.
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{B C}{A B}$
$=\frac{7}{8}$
If $B C$ is $7 k,$ then $A B$ will be $8 k,$ where $k$ is a positive integer.
Applying Pythagoras theorem in $\triangle ABC ,$ we obtain
$AC ^{2}= AB ^{2}+ BC ^{2}$
$=(8\, k)^{2}+(7\, k)^{2}$
$=64\, k^{2}+49\, k^{2}$
$=113 \,k^{2}$
$A C=\sqrt{113 k}$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{A B}{A C}$
$=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}$
$=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$
$\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1-\sin ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)}$
$(i)$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{\frac{49}{113}}{\frac{64}{113}}=\frac{49}{64}$
$(ii)$ $\cot ^{2} \theta=(\cot \theta)^{2}=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$
If $\angle B$ and $\angle Q$ are acute angles such that $\sin B =\sin Q$, then prove that $\angle B =\angle Q$.
In triangle $ABC ,$ right -angled at $B ,$ if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:
$(i)$ $\sin A \cos C+\cos A \sin C$
$(ii)$ $\cos A \cos C-\sin A \sin C$
$\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}=\operatorname{cosec} A+\cot A,$ using the identity $\operatorname{cosec}^{2} A=1+\cot ^{2} A$
State whether the following are true or false. Justify your answer.
$\sin (A+B)=\sin A+\sin B$