8. Introduction to Trigonometry
medium

यदि $\sin 3 A =\cos \left( A -26^{\circ}\right)$ हो, जहाँ, $3 A$ एक न्यून कोण है तो $A$ का मान जात कीजिए।

A

$29$

B

$32$

C

$20$

D

$25$

Solution

We are given that $\sin 3 A =\cos \left( A -26^{\circ}\right)$ ……..$(1)$

Since,$\sin 3 A =\cos \left(90^{\circ}-3 A \right),$ we can write $(1)$ as

$\cos \left(90^{\circ}-3 A \right)=\cos \left( A -26^{\circ}\right)$

Since,$90^{\circ}-3 A$ and $A -26^{\circ}$ are both acute angles, therefore,

$90^{\circ}-3 A = A -26^{\circ}$

Which Gives,$A=29^{\circ}$

Standard 10
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.