જો $(3+a x)^{9}$ ના વિસ્તરણમાં $x^{2}$ અને $x^{3}$ ના સહગુણકો સમાન હોય, તો $a$ શોધો.
It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by
${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$
Assuming that $x^{2}$ occurs in the $(r+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain
${T_{r + 1}} = {\,^9}{C_r}{(3)^{9 - r}}{(ax)^r} = {\,^9}{C_r}{(3)^{2 - r}}{a^r}{x^r}$
Comparing the indices of $x$ in $x^{2}$ and in $T_{r+1},$ we obtain
$r=2$
Thus, the coefficient of $x^{2}$ is
${\,^9}{C_2}{(3)^{9 - 2}}{a^2} = \frac{{9!}}{{2!7!}}{(3)^7}{a^2} = 36{(3)^7}{a^2}$
Assuming that $x^{3}$ occurs in the $(k+1)^{\text {th }}$ term in the expansion of $(3+a x)^{9}$, we obtain
${T_{k + 1}} = {\,^9}{C_k}{(3)^{9 - k}}{(ax)^k} = {\,^9}{C_k}{(3)^{9 - k}}{a^k}{x^k}$
Comparing the indices of $x$ in $x^{3}$ and in $T_{k+1},$ we obtain $k=3$
Thus, the coefficient of $x^{3}$ is
${\,^9}{C_3}{(3)^{9 - 3}}{a^3} = \frac{{9!}}{{3!6!}}{(3)^6}{a^3} = 84{(3)^6}{a^3}$
It is given that the coefficient of $x^{2}$ and $x^{3}$ are the same.
$84(3)^{6} a^{3}=36(3)^{7} a^{2}$
$\Rightarrow 84 a=36 \times 3$
$\Rightarrow a=\frac{36 \times 3}{84}=\frac{104}{84}$
$\Rightarrow a=\frac{9}{7}$
Thus, the required value of $a$ is $9 / 7$
${\left( {x + \frac{1}{x}} \right)^{10}}$ ના વિસ્તરણમાં મધ્યમપદ મેળવો.
જો ${\left( {{x^4} + \frac{1}{{{x^3}}}} \right)^{15}}$ ના વિસ્તરણમાં ${x^4}$ એ ${r^{th}}$ પદમાં બને છે તો $r = $
$(1 + x + y + z)^4$ ના વ્સિતરણમાં $x^2y, xy^2z, xyz$ ના સહગુણકોનો ગુણોત્તર મેળવો
બતાવો કે $(1+x)^{2 n}$ ના વિસ્તરણના મધ્યમ પદનો સહગુણક એ $(1+x)^{2 n-1}$ ના વિસ્તરણનાં મધ્યમ પદોના સહગુણકોના સરવાળા જેટલો છે.
$(1+x)^{20}$ વિસ્તરણમાં મધ્યમ પદ અને $(1+x)^{19}$ ના વિસ્તરણમાં બે મધ્યમ પદોનો સરવાળાનો ગુણોતર મેળવો.