$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, માં $x^3$ અને $x^{-13}$ ના સહગુણાકોનો સરવાળો..........................
$118$
$116$
$115$
$117$
ધારોકે $\left(x-\frac{3}{x^2}\right)^n, x \neq 0 . n \in N$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદોના સહગુણકોનો સરવાળો $376$ છે. તો $x^4$ નો સહગુણક $..........$ છે.
જો $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ ના વિસ્તરણમાં $x$ થી સ્વત્રંત પદ $k,$ હોય તો $18 k$ ની કિમત મેળવો.
${(1 + x)^{2n + 1}}$ ના વિસ્તરણમાં મહતમ સહગુણક મેળવો.
દ્રીપદી ${(1 + ax)^n}$ $(n \ne 0)$ ના વિસ્તરણમાં પ્રથમ ત્રણ પદો $1, 6x$ અને $16x^2$ હોય, તો $a$ અને $n$ ની કિમત અનુક્રમે . . . . થાય.
જો કોઈ ધન પૂર્ણાક સંખ્યા $n$ માટે $(1+x)^{n+5}$ ના વિસ્તરણમાં $x$ ની ઘાતમાં વધારો થાય અને આ વિસ્તરણમા ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $5: 10: 14$ હોય તો આ વિસ્તરણમાં સૌથી મોટો સહગુણક મેળવો