$(x+a)^{n}$ ના વિસ્તરણમાં છેલ્લેથી $r$ મું પદ શોધો.
There are $(n+1)$ terms in the expansion of $(x+a)^{n}$. Observing the terms we can say that the first term from the end is the last term, i.e., $(n+1)^{\text {th }}$ term of the expansion and $n+1=(n+1)-(1-1) .$
The second term from the end is the $n^{\text {th }}$ term of the expansion, and $n=(n+1)-(2-1) .$
The third term from the end is the $(n-1)^{\text {th }}$ term of the expansion and $n-1=(n+1)-(3-1)$ and so on.
Thus $r^{th}$ term from the end will be term number $(n+1)-(r-1)=(n-r+2)$ of the expansion. And the $(n-r+2)^{ th }$ term is $^{n} C _{n-r+1} x^{r-1} a^{n-r+1}$
જો $\left(x+x^{\log _{2} x}\right)^{7}$ ના વિસ્તરણમાં ચોથું પદ $4480$ હોય તો $x$ ની કિમંત મેળવો. કે જ્યાં $x \in N$ આપેલ છે.
જો ${\left( {x + 1} \right)^n}$ ના વિસ્તરણમાં $x$ ની ઘાતના કોઈ પણ ત્રણ ક્રમિક પદોનો ગુણોત્તર $2 : 15 : 70$ હોય તો ત્રણેય પદોના સહગુણોકની સરેરાસ મેળવો.
જો કોઈ ધન પૂર્ણાક સંખ્યા $n$ માટે $(1+x)^{n+5}$ ના વિસ્તરણમાં $x$ ની ઘાતમાં વધારો થાય અને આ વિસ્તરણમા ત્રણ ક્રમિક પદોના સહગુણકોનો ગુણોત્તર $5: 10: 14$ હોય તો આ વિસ્તરણમાં સૌથી મોટો સહગુણક મેળવો
${\left( {2{x^2} - \frac{1}{{3{x^2}}}} \right)^{10}}$ ના વિસ્તરણ ${6^{th}}$ પદ મેળવો.
મધ્યમ પદ શોધો : $\left(\frac{x}{3}+9 y\right)^{10}$