Let the sum of the first three terms of an $A. P,$ be $39$ and the sum of its last four terms be $178.$ If the first term of this $A.P.$ is $10,$ then the median of the $A.P.$ is
If $\log _e \mathrm{a}, \log _e \mathrm{~b}, \log _e \mathrm{c}$ are in an $A.P.$ and $\log _e \mathrm{a}-$ $\log _e 2 b, \log _e 2 b-\log _e 3 c, \log _e 3 c-\log _e a$ are also in an $A.P,$ then $a: b: c$ is equal to
If $\alpha ,\;\beta ,\;\gamma $ are the geometric means between $ca,\;ab;\;ab,\;bc;\;bc,\;ca$ respectively where $a,\;b,\;c$ are in A.P., then ${\alpha ^2},\;{\beta ^2},\;{\gamma ^2}$ are in
Suppose we have an arithmetic progression $a_1, a_2, \ldots a_n, \ldots$ with $a_1=1, a_2-a_1=5$. The median of the finite sequence $a_1, a_2, \ldots, a_k$, where $a_k \leq 2021$ and $a_{k+1} > 2021$ is
If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......