निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=4 n-3 ; a_{17}, a_{24}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=17,$ we obtain

$a_{17}=4(17)-3=68-3=65$

Substituting $n=24,$ we obtain

$a_{24}=4(24)-3=96-3=93$

Similar Questions

$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।

निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=\frac{n(n-2)}{n+3} ; a_{20}$

यदि किसी समान्तर श्रेणी के $p$ वें पद का $p$ गुना, $q$ वें पद के $q$ गुना के बराबर है, तब $(p + q)$ वाँ पद है

श्रेणी $\sqrt 2  + \sqrt 8  + \sqrt {18}  + \sqrt {32}  + .........$ के  $24$ पदों का योगफल है

यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$  होंगे