निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है

$a_{n}=4 n-3 ; a_{17}, a_{24}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=17,$ we obtain

$a_{17}=4(17)-3=68-3=65$

Substituting $n=24,$ we obtain

$a_{24}=4(24)-3=96-3=93$

Similar Questions

यदि किसी समांतर श्रेणी के $n$ वें पद का योगफल $3 n^{2}+5 n$ हैं तथा इसका $m$ वाँ पद $164$ है, तो $m$ का मान ज्ञात कीजिए।

समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है

  • [JEE MAIN 2020]

यदि एक शून्येतर समान्तर श्रेढ़ी का $19$ वां पद शून्य है, तो इसका ($49$ वाँ) : ($29$ वाँ पद) है 

  • [JEE MAIN 2019]

यदि समान्तर श्रेणी का  $p$ वाँ पद $q$ और $q$ वाँ पद $p$ है, तो $r$ वाँ पद होगा

यदि किसी समान्तर श्रेणी के $n$ पदों का योगफल $nA + {n^2}B$, जहाँ $A,B$ नियतांक हैं, है। तो इनका सार्वअन्तर होगा