निम्नलिखित अनुक्रम में वांधित पद ज्ञात कीजिए, जिनका $n$ वाँ पर दिया गया है
$a_{n}=(-1)^{n-1} n^{3} ; a_{9}$
$729$
Substituting $n=7,$ we obtain
$a_{9}=(-1)^{9-1}(9)^{3}=(9)^{3}=729$
माना $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4,(1-3 \beta x)^2$ तथा $\left(1-\frac{\beta}{2} x \right)^6, \beta > 0$ के प्रसार में मध्य पदों के गुणांक क्रमश: एक $A.P.$ के पहले तीन पद हैं। यदि इस $A.P.$ का सार्व अंतर $d$ है, तो $50-\frac{2 d }{\beta^2}$ बराबर है
दी गई एक समांतर श्रेढ़ी के सभी पद धनपूर्णांक हैं। इसके प्रथम नौ पदों का योग $200$ से अधिक तथा $220$ से कम है। यदि इसका दूसरा पद $12$ है, तो इसका चौथा पद है
एक बहुभुज के दो क्रमिक अंतःकोणों का अंतर $5^{0}$ है। यदि सबसे छोटा कोण $120^{\circ}$ हो, तो बहुभुज की भुजाओं की संख्या ज्ञात कीजिए।
एक पूर्णांक तथा इसके घन का अन्तर विभाजित है
$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है
Confusing about what to choose? Our team will schedule a demo shortly.