જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{20}}$પદ શોધો : $a_{n}=\frac{n(n-2)}{n+3}$  

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=20,$ we obtain

$a_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}$

Similar Questions

અહી $a_1=8, a_2, a_3, \ldots a_n$  એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો  $50$ અને અંતિમ ચાર પદોનો સરવાળો  $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.

  • [JEE MAIN 2023]

$8$ અને $26$ વચ્ચે $5$ સંખ્યાઓ ઉમેરો  કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને. 

ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.

  • [JEE MAIN 2021]

જો સમાંતર શ્રેણીનું $n$ મું પદ $t_n$ અને જો $t_7 = 9,$ હોય, તો સામાન્ય તફાવતનું મૂલ્ય કે જે $t_1\ t_2\ t_7$ ને લઘુત્તમ બનાવે તે કેટલું હશે ?

જો $a_1, a_2, .. a_{24}$ સમાંતર શ્રેણીમાં હોય અને $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ થાય, તો આ સમાંતર શ્રેણીના $24$ પદોનો સરવાળો કેટલો થાય ?