જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{20}}$પદ શોધો : $a_{n}=\frac{n(n-2)}{n+3}$  

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Substituting $n=20,$ we obtain

$a_{20}=\frac{20(20-2)}{20+3}=\frac{20(18)}{23}=\frac{360}{23}$

Similar Questions

જો $x=\sum \limits_{n=0}^{\infty} a^{n}, y=\sum\limits_{n=0}^{\infty} b^{n}, z=\sum\limits_{n=0}^{\infty} c^{n}$, જ્યાં $a , b , c$ એ સમાંતર શ્રેણી$(A.P.)$ માં છે. $|a| < 1,|b| < 1,|c| < 1$, $abc$ $\neq 0$ તો:

  • [JEE MAIN 2022]

જો $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ એ સમાંતર શ્રેણીમાં છે અને $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ એ પણ સમાંતર શ્રેણીમાં  હોય તો $|x-2 y|$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

સમાંતર શ્રેણી $b_{1}, b_{2}, \ldots,$ $b_{ m }$ નો સામાન્ય તફાવત એ સમાંતર શ્રેણી $a _{1}, a _{2}, \ldots, a _{ n }$ ના સામાન્ય તફાવત કરતાં $2$ વધારે છે જો $a _{40}=-159, a _{100}=-399$ અને $b _{100}= a _{70},$ હોય તો  $b _{1}$ ની કિમત શોધો.

  • [JEE MAIN 2020]

સમાંતર શ્રેણીનું પદ $2$  અને સામાન્ય તફાવત $4 $ હોય, તો તેના પ્રથમ $40$ પદોનો સરવાળો........ છે.

જો શ્રેણીના પહેલા $n$ પદોનો સરવાળો $An^2 + Bn$ સ્વરૂપમાં હોય જ્યાં $A, B$ એ $n$ ના નિરપેક્ષ અચળ છે, તો ........ શ્રેણી છે.