અહી $a_1=8, a_2, a_3, \ldots a_n$ એ સમાંતર શ્રેણી માં છે . જો પ્રથમ ચાર પદોનો સરવાળો $50$ અને અંતિમ ચાર પદોનો સરવાળો $170$ હોય તો મધ્યના બે પદોનો ગુણાકાર મેળવો.
$8$ અને $26$ વચ્ચે $5$ સંખ્યાઓ ઉમેરો કે જેથી બનતી શ્રેણી સમાંતર શ્રેણી બને.
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
જો સમાંતર શ્રેણીનું $n$ મું પદ $t_n$ અને જો $t_7 = 9,$ હોય, તો સામાન્ય તફાવતનું મૂલ્ય કે જે $t_1\ t_2\ t_7$ ને લઘુત્તમ બનાવે તે કેટલું હશે ?
જો $a_1, a_2, .. a_{24}$ સમાંતર શ્રેણીમાં હોય અને $a_1 + a_5 + a_{10} + a_{15} + a_{20} + a_{24} = 225$ થાય, તો આ સમાંતર શ્રેણીના $24$ પદોનો સરવાળો કેટલો થાય ?