गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
$0.15,0.015,0.0015, \ldots 20$ पदों तक
The given $G.P.$ is $0.15,0.015,0.00015 \ldots$
Here, $a=0.15$ and $r=\frac{0.015}{0.15}=0.1$
$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$\therefore S_{20}=\frac{0.15\left[1-(0.1)^{20}\right]}{1-0.1}$
$=\frac{0.15}{0.9}\left[1-(0.1)^{20}\right]$
$=\frac{15}{90}\left[1-(0.1)^{20}\right]$
$=\frac{1}{6}\left[1-(0.1)^{20}\right]$
माना $a _{1}, a _{2}, \ldots \ldots, a _{10}$ एक गुणोत्तर श्रेढ़ी है। यदि $\frac{ a _{3}}{ a _{1}}=25$, तो $\frac{ a _{9}}{ a _{5}}$ बराबर है
यदि $x,\;y,\;z$ गुणोत्तर श्रेणी में हों व ${a^x} = {b^y} = {c^z}$, तो
यदि किसी गुणोत्तर श्रेणी का प्रथम तथा $n$ वाँ पद क्रमशः $a$ तथा $b$ हैं, एवं $P , n$ पदों का गुणनफल हो, तो सिद्ध कीजिए कि $P ^{2}=(a b)^{n}$
श्रेणी $.9 + .09 + .009.........$ के $100$ पदों का योग होगा
अनुक्रम $8,88,888,8888 \ldots$ के $n$ पदों का योग ज्ञात कीजिए