रेखाओं $y-x=0, x+y=0$ और $x-k=0$ से बने त्रिभुज का क्षेत्रफल ज्ञात कीजिए।
The equation of the given lines are
$y-x=0 $.....$(1)$
$x+y=0$.....$(2)$
$x-k=0$.....$(3)$
The point of intersection of lines $(1)$ and $(2)$ is given by
$x=0$ and $y=0$
The point of intersection of lines $( 2 )$ and $( 3 )$ is given by
$x=k$ and $y=-k$
The point of intersection of lines $(3)$ and $(1)$ is given by
$x=k$ and $y=k$
Thus, the vertices of the triangle formed by the three given lines are $(0,0),( k ,- k ),$ and $( k , k )$
We know that the area of a triangle whose vertices are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),$ and $\left(x_{3}, y_{3}\right)$ is
$\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|$
Therefore, area of the triangle formed by the three given lines
$=\frac{1}{2}|0(-k-k)+k(k- 0)+k(0+k)|$square units
$=\frac{1}{2}\left|k^{2}+k^{2}\right|$square units
$=\frac{1}{2}\left|2 k^{2}\right|$ square umits
$=k^{2}$ square units
किसी चतुर्भुज के शीर्षों के निर्देशांक $(2, -1), (0, 2), (2, 3)$ व $(4, 0)$ हैं। इसके विकर्णों के मध्य कोण है
बिंदु $(2,3)$ के रेखा $(2 x-3 y+4)+k(x-2 y+3)=0, k \in R$ में प्रतिबिंब का बिंदुपथ एक
यदि त्रिभुज $ABC$ की भुजाओं $BC,\,CA$ तथा $AB$ के मध्य बिन्दु क्रमश: $(1, 3), \,(5, 7)$ तथा $(-5, 7)$ हों, तो भुजा $AB$ का समीकरण होगा
यदि एक रेखा $L$, रेखा $5 x-y=1$ पर लंबवत है तथा रेखा $L$ तथा निर्देशांक अक्षों द्वारा बनी त्रिभुज का क्षेत्रफल $5$ है, तो रेखा $L$ की रेखा $x+5 y=0$ से दूरी है
यदि सरल रेखा $3x + 4y + 15 = 0$ पर कोई दो बिन्दु $A$ व $B$ इस प्रकार हों कि $OA = OB = 9$ इकाई, तो त्रिभुज $OAB$ का क्षेत्रफल है