यदि समद्विबाहु त्रिभुज के आधार के सिरे के शीर्ष $(2a,0)$ व $(0,a)$ हैं व एक भुजा का समीकरण $x = 2a$ है तब त्रिभुज का क्षेत्रफल है
$5{a^2}sq$. वर्ग इकाई
$\frac{5}{2}{a^2}sq.$ वर्ग इकाई
$\frac{{25{a^2}}}{2}sq.$ वर्ग इकाई
इनमें से कोई नहीं
यदि रेखाओं $\mathrm{x} \cos \theta+\mathrm{y} \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$ के निर्देशांक अक्षो के बीच रेखाखंडो के मध्य बिंदुओं द्वारा बने वक्र पर एक बिंदु $\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$ है, तो $\alpha$ बराबर है :
समद्विबाहु त्रिभुज $ABC$ में, आधार $BC$ के बिन्दुओं $B$ तथा $C$ के निर्देशांक क्रमश: $(1, 2)$ तथा $(2, 1)$ हैं। यदि रेखा $AB$ का समीकरण $y = 2x$ है, तब रेखा $AC$ का समीकरण है
एक समबाहु त्रिभुज के आधार का समीकरण $2x - y = 1$ और शीर्ष $(-1, 2)$ है, तब त्रिभुज की भुजा की लम्बाई होगी
समबाहु त्रिभुज का एक शीर्ष $(2, 3)$ है एवं सामने वाली भुजा का समीकरण $x + y = 2$ है, तो शेष दो में से एक भुजा का समीकरण है
दर्शाइए कि रेखाओं
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ और $x=0$ से बने त्रिभुज का क्षेत्रफल $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$ है।