अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $\frac{y^{2}}{9}-\frac{x^{2}}{27}=1$ or $\frac{y^{2}}{3^{2}}-\frac{x^{2}}{(\sqrt{27})^{2}}=1$

On comparing this equation with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{ x ^{2}}{b^{2}}=1,$ we obtain $a=3$ and $b=\sqrt{27}$

We known that  $a^{2}=b^{2}+c^{2}$ 

$\therefore c^{2}=3^{2}+(\sqrt{27})^{2}=9+27=36$

$\Rightarrow c=6$

The coordinates of the foci are $(0,\,±6)$

The coordinates of the vertices are $(0,\,±3)$ 

Eccentricity, $e=\frac{c}{a}=\frac{6}{3}=2$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 27}{3}=18$

Similar Questions

रेखा $y = x - 1$ का $3{x^2} - 4{y^2} = 12$ के साथ स्पर्श बिन्दु है

माना $0 < \theta < \frac{\pi}{2}$ है। यदि अतिपरवलय $\frac{x^{2}}{\cos ^{2} \theta}-\frac{y^{2}}{\sin ^{2} \theta}=1$ की उत्केंद्रता $2$ से अधिक है , तो इसके नाभिलंब की लंबाई जिस अंतराल में है, वह है-

  • [JEE MAIN 2019]

अतिपरवलय ${x^2} - 3{y^2} = 2x + 8$ के संयुग्मी अतिपरवलय की उत्केन्द्रता होगी

माना अतिपरवलय $3 \mathrm{x}^2-4 \mathrm{y}^2=36$ पर बिन्दु $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0\right)$, रेखा $3 \mathrm{x}+2 \mathrm{y}=1$ के निकटतम है। तो $\sqrt{2}\left(\mathrm{y}_0-\mathrm{x}_0\right)$ बराबर है:

  • [JEE MAIN 2023]

यदि किसी अतिपरवलय के शीर्ष $(4, 0)$ तथा $(-4, 0)$ और नाभियाँ  $(6, 0)$ तथा $(-6, 0)$ हों, तो उत्केन्द्रता होगी