एक अतिपरवलय की अनुप्रस्थ अक्ष की लम्बाई $7$ है तथा वह बिन्दु $(5, -2)$ से गुजरता है। अतिपरवलय का समीकरण है
$\frac{4}{{49}}{x^2} - \frac{{196}}{{51}}{y^2} = 1$
$\frac{{49}}{4}{x^2} - \frac{{51}}{{196}}{y^2} = 1$
$\frac{4}{{49}}{x^2} - \frac{{51}}{{196}}{y^2} = 1$
इनमें से कोई नहीं
अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{{(y - 2)}^2}}}{9} = 1$ की नाभियाँ हैं
एक अतिपरवलय की नाभियाँ $( \pm 2,0)$ हैं तथा इसकी उत्केन्द्रता $\frac{3}{2}$ है। प्रथम चतुर्थांश में अतिपरवलय के एक बिंदु पर एक स्पर्श रेखा, जो $2 x+3 y=6$ के लंबवत है, खींची जाती है। यदि यह स्पर्श रेखा, $x$ - तथा $y$-अक्षों पर क्रमशः अंतःखंड $a$ तथा $b$ बनाती है, तो $|6 \mathrm{a}|+|5 \mathrm{~b}|$ बराबर है_______.
माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, बिंदु $(2 \sqrt{2},-2 \sqrt{2})$ से होकर जाता है। एक परवलय खींचा जाता है जिसकी नाभि, $H$ की धनात्मक भुज वाली नाभि पर है तथा परवलय की नियता $H$ की दूसरी नाभि से होकर जाती है। यदि परवलय की नाभि लंब जीवा की लंबाई, $H$ की नाभि लंब जीवा की लंबाई का $e$ गुना है, जहाँ $e$, $H$ की उत्केन्द्रता है, तो निम्न में से कौन सा बिंदु परवलय पर है ?
एक अतिपरवलय की नाभियों के बीच की दूरी उसके शीर्षो के बीच की दूरी की दुगनी है और संयुग्मी अक्ष की लम्बाई $6$ है। अतिपरवलय की अक्षों को निर्देशांक अक्ष लेते हुये अतिपरवलय का समीकरण है
आयताकार अतिपरवलय की उत्केन्द्रता का व्युत्क्रम है