अतिपरवलयों के शीर्षों, नाभियों के निर्देशांक, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$9 y^{2}-4 x^{2}=36$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given equation is $9 y^{2}-4 x^{2}=36$

It can be written as

$9 y^{2}-4 x^{2}=36$

Or, $\frac{y^{2}}{4}-\frac{x^{2}}{9}=1$

Or, $\frac{y^{2}}{2^{2}}-\frac{x^{2}}{3^{2}}=1$          ........... $(1)$

On comparing equation $(1)$ with the standard equation of hyperbola i.e., $\frac{y^{2}}{a^{2}}-\frac{ x ^{2}}{b^{2}},$ we obtain $a=2$ and $b=3$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore c^{2}=4+9=13$

$\Rightarrow c=\sqrt{13}$

Therefore,

The coordinates of the foci are $(0, \,\pm \sqrt{13})$

The coordinates of the vertices are $(0,\,±2)$

Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{2}$

Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 9}{2}=9$

Similar Questions

अतिपरवलय $\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1$ के लिए $'\alpha '$ का मान परिवर्तित करने पर निम्न में से क्या अचर रहेगा

  • [IIT 2003]

एक अतिपरवलय, $\frac{ x ^{-}}{25}+\frac{ y ^{2}}{16}=1$ की नाभियों से होकर जाता है तथा इसके अनुप्रस्थ और संयुग्मी अक्ष क्रमश: दीर्घवत के दीर्घ और अल्प अक्षों के समरूप हैं। यदि उनकी उत्केन्द्रताओं का गुणनफल एक है, तो अतिपरवलय का समीकरण है

  • [JEE MAIN 2021]

माना अतिपरवलय $\frac{\mathrm{x}^2}{16}-\frac{\mathrm{y}^2}{9}=1$ के उत्केन्द्रता $\mathrm{e}_1$ है तथा दीर्घवृत्त $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a>b$ जो अतिपरवलय की नाभियों से होकर जाता है, की उत्केन्द्रता $\mathrm{e}_2$ है। यदि $\mathrm{e}_1 \mathrm{e}_2=1$ है, तो दीर्घवृत्त की $\mathrm{x}$-अक्ष के समांतर तथा $(0,2)$ से होकर जाने वाली जीवा की लम्बाई है:

  • [JEE MAIN 2024]

माना दीर्घवृत्त, $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{ b ^{2}}=1( b <5)$ तथा अतिपरवलय $\frac{x^{2}}{16}-\frac{y^{2}}{b^{2}}=1$ की उत्केन्द्रताएँ क्रमशः $e_{1}$ तथा $e_{2}$ है और $e_{1} e_{2}$ $=1$ है। यदि दीर्घवृत्त और अतिपरवलय के नाभिकेन्दों के बीच की दूरीयाँ क्रमशः $\alpha$ तथा $\beta$ हैं, तो क्रमित युग्म $(\alpha, \beta)$ बराबर है

  • [JEE MAIN 2020]

अतिपरवलय $\frac{{\sqrt {1999} }}{3}({x^2} - {y^2}) = 1$ की उत्केन्द्रता है