આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Comparing the equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ with the standard equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Here, $a=3,\,\, b=4$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=5$

Therefore, the coordinates of the foci are $(±5,\,0)$ and that of vertices are $(\pm 3,\,0) .$ Also,

The eccentricity $e=\frac{c}{a}=\frac{5}{3} .$

The latus rectum $=\frac{2 b^{2}}{a}=\frac{32}{3}$

Similar Questions

વિધાન $ (A) $ : બિંદુ  $(5, -4)$  એ અતિવલય  $y^2 - 9x^2 + 1 = 0 $ ની અંદર આવેલું છે.

કારણ ${\rm{(R)}}$ બિંદુઓ ${\rm{ (}}{{\rm{x}}_{\rm{1}}}{\rm{, }}{{\rm{y}}_{\rm{1}}}{\rm{)}}$ એઅતિવલય ${\rm{ }}\,\,\frac{{{x^2}}}{{{a^2}}}\, - \,\,\frac{{{y^2}}}{{{b^2}}}\, = \,\,1$ ની અંદર આવેલું , તો $\frac{{x_{^1}^2}}{{{a^2}}}\, - \,\,\frac{{y_1^2}}{{{b^2}}}\, - \,\,1\,\, < \,\,0$

અહી પરવલય $P: y^{2}=4 x$ ની નાભીજીવા એ રેખા $L: y=m x+c, m>0$ ને સંપાતી છે કે જે પરવલય ને બિંદુઓ $M$ અને $N$ માં છેદે છે. જો રેખા $L$ એ અતિવલય $H : x ^{2}- y ^{2}=4$ નો સ્પર્શક છે .જો  $O$ એ $P$ નું શિરોબિંદુ છે અને $F$ એ $H$ ની ધન $x-$અક્ષ પરની નાભી હોય તો ચતુષ્કોણ $OMFN$ નું ક્ષેત્રફળ મેળવો.

  • [JEE MAIN 2022]

ધારોકે $A$ એ $x$-અક્ષ પરનું બિંદુ છે. $A$ પરથી વક્રી $x^2+y^2=0$ અને $y^2=16 x$ પર સામાન્ય સ્પર્શકો દોરવામાં આવે છે. જો આમાનો એક સ્પર્શક બને વક્રોને $Q$ અને $R$ માં સ્પર્શે, તો $(Q R)^2=.........$

  • [JEE MAIN 2023]

વર્તૂળ $x^2 + y^2 - 8x = 0$ અને અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{4}\,\, = \,\,1\,$બિંદુ $A$ અને $B$ આગળ છેદે છે. રેખા $2x + y = 1$ એ અતિવલય $\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$નો સ્પર્શક છે. જો આ રેખા એ ખૂબ જ નજીકની નિયામિકા અને $x$-અક્ષોના છેદબિંદુમાંથી પસાર થતી હોય, તો અતિવલયની ઉત્કેન્દ્રતા મેળવો.

જો સુરેખા $\,x\cos \,\,\alpha \,\, + \,\,y\,\sin \,\,\alpha \,\, = \,\,p$   એ અતિવલય 

$\frac{{{x^2}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,$ નો સ્પર્શક હોય , તો .....