10-2. Parabola, Ellipse, Hyperbola
medium

આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$

Option A
Option B
Option C
Option D

Solution

Comparing the equation $\frac{x^{2}}{9}-\frac{y^{2}}{16}=1$ with the standard equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

Here, $a=3,\,\, b=4$ and $c=\sqrt{a^{2}+b^{2}}=\sqrt{9+16}=5$

Therefore, the coordinates of the foci are $(±5,\,0)$ and that of vertices are $(\pm 3,\,0) .$ Also,

The eccentricity $e=\frac{c}{a}=\frac{5}{3} .$

The latus rectum $=\frac{2 b^{2}}{a}=\frac{32}{3}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.