10-2. Parabola, Ellipse, Hyperbola
medium

प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए

दीर्घ अक्ष, $x-$ अक्ष पर और बिंदुओं $(4,3)$ और $(6,2)$ से जाता है।

Option A
Option B
Option C
Option D

Solution

since the major axis is on the $x-$ axis, the equation of the ellipse will be of the form

$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$           ………. $(1)$

Where, a is the semi-major axis

The ellipse passes through points $(4,\,3)$ and $(6,\,2)$ . Hence,

$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$          ………. $(2)$

$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1$          ………. $(3)$

On solving equations $(2)$ and $(3),$ we obtain $a^{2}=52$ and $b^{2}=13$

Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.