प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष, $x-$ अक्ष पर और बिंदुओं $(4,3)$ और $(6,2)$ से जाता है।
since the major axis is on the $x-$ axis, the equation of the ellipse will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ .......... $(1)$
Where, a is the semi-major axis
The ellipse passes through points $(4,\,3)$ and $(6,\,2)$ . Hence,
$\frac{16}{a^{2}}+\frac{9}{b^{2}}=1$ .......... $(2)$
$\frac{36}{a^{2}}+\frac{4}{b^{2}}=1$ .......... $(3)$
On solving equations $(2)$ and $(3),$ we obtain $a^{2}=52$ and $b^{2}=13$
Thus, the equation of the ellipse is $\frac{x^{2}}{52}+\frac{y^{2}}{13}=1$ or $x^{2}+4 y^{2}=52$
यदि किसी दीर्घवृत्त की नाभियों के बीच की दूरी उसकी लघु अक्ष के बराबर हो, तो उसकी उत्केन्द्रता होगी
यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है
दीर्घवृत्त $25{x^2} + 16{y^2} - 150x - 175 = 0$ की उत्केन्द्रता है
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ की नियताओं के बीच की दूरी है