Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to

  • [JEE MAIN 2020]
  • A

    $\frac{2}{\sqrt{3}}$

  • B

    $\frac{2 \sqrt{2}}{3}$

  • C

    $\frac{2 }{3}$

  • D

    $\frac{\sqrt{2}}{3}$

Similar Questions

The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:

  • [JEE MAIN 2024]

If the co-ordinates of two points $A$ and $B$ are $(\sqrt{7}, 0)$ and $(-\sqrt{7}, 0)$ respectively and $P$ is any point on the conic, $9 x^{2}+16 y^{2}=144,$ then $PA + PB$ is equal to

  • [JEE MAIN 2020]

Which one of the following is the common tangent to the ellipses, $\frac{{{x^2}}}{{{a^2} + {b^2}}} + \frac{{{y^2}}}{{{b^2}}}$ $=1\&$ $ \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{a^2} + {b^2}}}$ $=1$

The eccentricity of the ellipse $25{x^2} + 16{y^2} = 100$, is

The area of the quadrilateral formed by the tangents at the end points of latus rectum to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$, is .............. $\mathrm{sq. \,units}$

  • [IIT 2003]