જેનાં નાભિઓ $(±5,\,0)$. હોય અને શિરોબિંદુઓ $(±13,\,0)$ હોય તેવા ઉપવલયનું સમીકરણ મેળવો.
since the vertices are on $x-$ axis, the equation will be of the form
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ , where a is the semi-major axis.
Given that $a=13$ , $c=\pm 5$
Therefore, from the relation $c^{2}=a^{2}-b^{2},$ we get
$25=169-b^{2}$, i.e., $b=12$
Hence the equation of the ellipse is $\frac{x^{2}}{169}+\frac{y^{2}}{144}=1$
જો $-4/3$ ઢાળવાળો ઉપવલય$\frac{{{x^2}}}{{18}}\,\, + \;\,\frac{{{y^2}}}{{32}}\,\, = \,\,1$ નો સ્પર્શક, પ્રધાન અક્ષ અને ગૌણ અક્ષને અનુક્રમે $A$ અને $B$ માં છેદે તો $\Delta OAB$ નું ક્ષેત્રફળ .......... ચો. એકમ
ધારોકે ઉપવલય $E: x^2+9 y^2=9$ એ ધન $x$-અને $y$-અક્ષોને અનુક્રમે બિંદુ $A$ અને $B$ માં છેદે છે.ધારોકે $E$ નો પ્રધાન અક્ષ એ વર્તુળ $C$ નો વ્યાસ છે.ધારોકે $A$ અને $B$ માંથી પસાર થતી રેખા વર્તુળ $C$ ને બિંદુ $P$ માં મળે છે.જો શિરોબિંદુઓ $A,P$ અને ઉગમબિંદુ $O$ વાળા ત્રિકોણનું ક્ષેત્રફળ $\frac{m}{n}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજય છે, તો $m-n=.......$
ઉપવલય $\frac{{{x^2}}}{6}\,\, + \;\,\frac{{{y^2}}}{2}\, = \,\,1$ પરના બિંદુનું કેન્દ્રથી અંતર $2$ હોય તો તેનો ઉતકેન્દ્રીકોણ (Eccentric Angle) મેળવો.
ધારો કે $A(\alpha, 0)$ અને $B(0, \beta)$ એ, રેખા $5 x+7 y=50$ પરના બિંદુઓ છે. ધારો કે બિંદુ $P$, રેખાખંડ $A B$ નું $7: 3$ ગુણોત્તરમાં અંતઃવિભાજન કરે છે. ધારો કે ઉપવલય $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ ની એક નિયામિકા $3 x-25=0$ છે અને અનુરૂપ નાભિ $S$ છે. જો $S$ માંથી $x$-અક્ષ પરનો લંબ $P$ માંથી પસાર થતો હોય, તો $E$ ના નાભિલંબની લંબાઇ .......................... છે.
ઉપવલય $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{4}=1$, a $>2$, ની અંતર્ગત, જેનું એક શિરોબિંદુ આ ઉપવલયની મુખ્ય અક્ષનું એક અંત્ય બિંદુ હોય અને જેની એક બાજુ $y$-અક્ષને સમાંતર હોય તેવા ત્રિકોણનું મહત્તમ ક્ષેત્રફળ $6 \sqrt{3}$ છે. તો આ ઉપવલયની ઉત્કેન્દ્રતા ....... છે,