આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો :  નાભિઓ $(\pm 4,\,0),$  નાભિલંબની  લંબાઈ $12$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Foci $(\pm 4,\,0),$ the latus rectum is of length $12$

Here, the foci are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the foci are $(\pm 4,\,0)$,  $c=4$

Length of latus rectum $=12$

$\Rightarrow \frac{2 b^{2}}{a}=12$

$\Rightarrow b^{2}=6 a$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+6 a=16$

$\Rightarrow a^{2}+6 a-16=0$

$\Rightarrow a^{2}+8 a-2 a-16=0$

$\Rightarrow(a+8)(a-2)=0$

$\Rightarrow a=-8,2$

since a is non-negative, $a=2$

$\therefore b^{2}=6 a=6 \times 2=12$

Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$

Similar Questions

અતિવલયની નાભીઓ $(1,14)$ અને $(1,-12)$ છે અને તે બિંદુ $(1,6)$ માંથી પસાર થાય છે તો નાભીલંભની લંબાઈ મેળવો.

  • [JEE MAIN 2025]

જો અતિવલયનું કેન્દ્ર ઉંગમબિંદુ હોય તથા બિંદુ $(4, 2)$ માંથી પસાર થતું હોય અને તેની મુખ્ય અક્ષની લંબાઈ $4$ અને $x -$ અક્ષ હોય તો અતિવલયની ઉત્કેન્દ્રતા મેળવો. 

  • [JEE MAIN 2019]

જો  $\mathrm{e}_{1}$ અને  $\mathrm{e}_{2}$ એ અનુક્રમે ઉપવલય $\frac{\mathrm{x}^{2}}{18}+\frac{\mathrm{y}^{2}}{4}=1$ અને અતિવલય $\frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$ ની  ઉકેન્દ્રીતા હોય  અને બિંદુ $\left(\mathrm{e}_{1}, \mathrm{e}_{2}\right)$ એ ઉપવલય $15 \mathrm{x}^{2}+3 \mathrm{y}^{2}=\mathrm{k},$ પર હોય તો  $\mathrm{k}$ મેળવો.

  • [JEE MAIN 2020]

જો ઉપવલય $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ ની નાભિ અતિવલય  $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ ની નાભિ હોય તો $b^2$ = 

  • [AIEEE 2012]

અતિવલય $4x^2 - 9y^2\, = 36$ નો અભિલંબ યામાક્ષો $x$ અને $y$ ને અનુક્રમે બિંદુ $A$ અને $B$ માં છેદે છે જો સમાંતરબાજુ ચતુષ્કોણ $OABP$ ( $O$ એ ઉંગમબિંદુ છે) બનાવવામાં આવે તો બિંદુ $P$ નો બિંદુપથ મેળવો.

  • [JEE MAIN 2018]