प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

नाभियाँ $(±4,0)$, नाभिलंब जीवा की लंबाई $12$ है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Foci $(\pm 4,\,0),$ the latus rectum is of length $12$

Here, the foci are on the $x-$ axis.

Therefore, the equation of the hyperbola is of the form $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$

since the foci are $(\pm 4,\,0)$,  $c=4$

Length of latus rectum $=12$

$\Rightarrow \frac{2 b^{2}}{a}=12$

$\Rightarrow b^{2}=6 a$

We know that $a^{2}+b^{2}=c^{2}$

$\therefore a^{2}+6 a=16$

$\Rightarrow a^{2}+6 a-16=0$

$\Rightarrow a^{2}+8 a-2 a-16=0$

$\Rightarrow(a+8)(a-2)=0$

$\Rightarrow a=-8,2$

since a is non-negative, $a=2$

$\therefore b^{2}=6 a=6 \times 2=12$

Thus, the equation of the hyperbola is $\frac{x^{2}}{4}-\frac{y^{2}}{12}=1$

Similar Questions

एक दीर्घवृत $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ अतिपरवलय $H: \frac{x^2}{49}-\frac{y^2}{64}=-1$ के शीर्षो से होकर जाता है। माना दीर्घवृत $E$ के दीर्घ तथा लघु अक्ष क्रमशः अतिपरवलय $H$ के अनुप्रस्थ तथा संयुग्मी अक्ष के सम्पाती हैं। माना $E$ तथा $H$ की उत्केन्द्रताओं का गुणनफल $\frac{1}{2}$ है। यदि दीर्घवृत $E$ की नाभिलंब जीवा की लंबाई $l$ है, तो $113 l$ का मान है  $...............$

  • [JEE MAIN 2022]

एक वर्ग $ABCD$ के सभी शीर्ष वक्र $x ^{2} y ^{2}=1$ पर हैं। इसकी भुजाओं के मध्यबिंदु भी इसी वक्र पर हैं तो $ABCD$ के क्षेत्रफल का वर्ग है ............ |

  • [JEE MAIN 2021]

उस बिन्दु $P(\alpha ,\,\beta )$ का बिन्दुपथ जो इस प्रकार गमन करता है कि रेखा $y = \alpha x + \beta $, अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा है, है

  • [AIEEE 2005]

अतिपरवलय ${x^2} - 3{y^2} = 1$ के संयुग्मी अतिपरवलय की उत्केन्द्रता है

$m$ का वह मान जिसके लिए रेखा $y = mx + 6$ अतिपरवलय $\frac{{{x^2}}}{{100}} - \frac{{{y^2}}}{{49}} = 1$ की स्पर्श रेखा होगी, है