10-2. Parabola, Ellipse, Hyperbola
medium

જેનાં નાભિઓ $(0,\,\pm 3)$ અને શિરોબિંદુઓ $(0,\,\pm \frac {\sqrt {11}}{2})$ હોય તેવા અતિવલયનું સમીકરણ મેળવો.

A

$100 y^{2}-44 x^{2}=275$

B

$100 y^{2}-44 x^{2}=275$

C

$100 y^{2}-44 x^{2}=275$

D

$100 y^{2}-44 x^{2}=275$

Solution

Solution since the foci is on $y-$ axis, the equation of the hyperbola is of the form $\frac{y^{2}}{a^{2}}-\frac{x^{2}}{b^{2}}=1$

since vertices are $\left(0,\,\pm \frac{\sqrt{11}}{2}\right)$ ,   $a=\frac{\sqrt{11}}{2}$

Also, since foci are $(0,\,±3)$;   $c=3$ and $b^{2}=c^{2}-a^{2}=\frac{25}{4}$

Therefore, the equation of the hyperbola is

$\frac{y^{2}}{\left(\frac{11}{4}\right)}$ $-\frac{x^{2}}{\left(\frac{25}{4}\right)}=1$, i.e., $100 y^{2}-44 x^{2}=275$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.