આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\cos ec\, x=-2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cos ec\, x=-2$

It is known that

$\cos ec\, \frac{\pi}{6}=2$

$\therefore \cos ec \left(\pi+\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$ and $\cos ec\, \left(2 \pi-\frac{\pi}{6}\right)=-\cos ec\, \frac{\pi}{6}=-2$

i.e., $\cos ec\, \frac{7 \pi}{6}=-2$ and $\cos ec\, \frac{11 \pi}{6}=-2$

Therefore, the principal solutions are $x=\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$

Now $\cos ec\,  x=\cos ec\, \frac{7 \pi}{6}$

$\Rightarrow \sin x=\sin \frac{7 \pi}{6} \quad\left[\cos ec\, x=\frac{1}{\sin x}\right]$

$\Rightarrow x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$

Therefore, the general solution is $x=n \pi+(-1)^{n} \frac{7 \pi}{6},$ where $n \in Z$.

Similar Questions

$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ ઉકેલો.

જો$\cos 6\theta + \cos 4\theta + \cos 2\theta + 1 = 0$, કે જ્યાં $0 < \theta < {180^o}$, તો $\theta  =$

સમીકરણ ${\cos ^2}x + \frac{{\sqrt 3  + 1}}{2}\sin x - \frac{{\sqrt 3 }}{4} - 1 = 0$ ના  $[-\pi,\pi ]$ માં ઉકેલોની સંખ્યા ............. છે 

સમીકરણ ${\cos ^2}\theta + \sin \theta + 1 = 0$ નો ઉકેલ . . . . અંતરાલમાં આવેલ છે.

  • [IIT 1992]

જો $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.