આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\cos 3 x+\cos x-\cos 2 x=0$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\cos 3 x+\cos x-\cos 2 x=0$

$ \Rightarrow 2\cos \left( {\frac{{3x + 2}}{2}} \right)\cos \left( {\frac{{3x - x}}{2}} \right) - \cos 2x = 0\quad $

$\left[ {\cos A + \cos B = 2\cos \left( {\frac{{A + B}}{2}} \right)\cos \left( {\frac{{A - B}}{2}} \right)} \right]$

$\Rightarrow 2 \cos 2 x \cos x-\cos 2 x=0$

$\Rightarrow \cos 2 x(2 \cos x-1)=0$

$\Rightarrow \cos 2 x=0 \quad$ or $\quad 2 \cos x-1=0$

$\Rightarrow \cos 2 x=0 \quad$ or $\quad \cos x=\frac{1}{2}$

$\therefore 2 x=(2 n+1) \frac{\pi}{2}$

or $\quad \cos x=\cos \frac{\pi}{3},$ where $n \in Z$

$\Rightarrow x=(2 n+1) \frac{\pi}{4}$

or $\quad x=2 n \pi \pm \frac{\pi}{3},$ where $n \in Z$

Similar Questions

સમીકરણ $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ નો વ્યાપક ઉકેલ મેળવો.

સમીકરણ $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ નાં ઉકેલોની સંખ્યા __________છે.

  • [JEE MAIN 2024]

જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $

સમીકરણ $tan \,3x - tan \,2x - tan\, x = 0$ ના મુખ્ય ઉકેલોની સંખ્યા મેળવો. 

સમીકરણ $\tan \theta + \frac{1}{{\sqrt 3 }} = 0$ નું સમાધાન કરે તેવી $\theta $ ની ${0^o}$ અને ${360^o}$ વચ્ચેની કિમતો મેળવો.