$\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ નું અંતરાલ $0 \leq \theta \leq 2 \pi$ માં ઉકેલની સંખ્યા મેળવો.
$1$
$2$
$4$
$7$
સમીકરણ $sin^4x + cos^4x = sinx\, cosx$ ના $[0, 2\pi ]$ માં આવેલ કુલ ઉકેલોની સંખ્યા .... છેઃ
જો સમીકરણ $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ ને $\theta$ માટે વાસ્તવિક ઉકેલો હોય તો $\lambda$ ની કિમત ......... અંતરાલમાં આવેલ છે
સમીકરણ $\sin \theta = - \frac{1}{2}$ અને $\tan \theta = \frac{1}{{\sqrt 3 }}$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......