$\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ નું અંતરાલ $0 \leq \theta \leq 2 \pi$ માં ઉકેલની સંખ્યા મેળવો.

  • [KVPY 2019]
  • A

    $1$

  • B

    $2$

  • C

    $4$

  • D

    $7$

Similar Questions

$a\cos x + b\sin x = c,$ નો વ્યાપક ઉકેલ મેળવો. (કે જ્યાં $a,\,\,b,\,\,c$ એ અચળ છે )

જો $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$

સમીકરણ $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ ની કિમત મેળવો 

ધારોકે $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\} .$ તો $\sum_{\theta \in s} \sin ^2\left(\theta+\frac{\pi}{4}\right)=...........$.

  • [JEE MAIN 2023]