$\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ નું અંતરાલ $0 \leq \theta \leq 2 \pi$ માં ઉકેલની સંખ્યા મેળવો.
$1$
$2$
$4$
$7$
$a\cos x + b\sin x = c,$ નો વ્યાપક ઉકેલ મેળવો. (કે જ્યાં $a,\,\,b,\,\,c$ એ અચળ છે )
જો $\frac{{\tan 3\theta - 1}}{{\tan 3\theta + 1}} = \sqrt 3 $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
સમીકરણ $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ ની કિમત મેળવો
ધારોકે $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\} .$ તો $\sum_{\theta \in s} \sin ^2\left(\theta+\frac{\pi}{4}\right)=...........$.