चित्र में दिखाए गए दो सदिशों $A$ तथा $B$ के बीच का कोण $\theta$ है । इनके परिणामी सदिश का परिमाण तथा दिशा उनके परिमाणों तथा $\theta$ के पद् में निकालिए |
Answer Let $OP$ and $O$ represent the two vectors
$A$ and $B$ making an angle $\theta$ . Then, using the parallelogram method of vector addition, $OS$ represents the resultant vector $R :$
$R = A + B$
$S N$ is normal to $OP$ and $P M$ is normal to $O S .$
From the geometry of the figure,
$O S^{2}=O N^{2}+S N^{2}$
but $\quad O N=O P+P N=A+B \cos \theta$
$S N=B \sin \theta$
$O S^{2}=(A+B \cos \theta)^{2}+(B \sin \theta)^{2}$
$R^{2}=A^{2}+B^{2}+2 A B \cos \theta$
$R=\sqrt{A^{2}+B^{2}+2 A B \cos \theta}$
In $\Delta$ $OSN$, $S N=O S \sin \alpha=R \sin \alpha,$ and
in $\Delta$ $PSN$, $\quad S N=P S \sin \theta=B \sin \theta$
Therefore, $\quad R \sin \alpha=B \sin \theta$
$\frac{R}{\sin \theta}=\frac{B}{\sin \alpha}$
Similarly,
$PM =A \sin \alpha=B \sin \beta$
$\frac{A}{\sin \beta}=\frac{B}{\sin \alpha}$
$\frac{R}{\sin \theta}=\frac{A}{\sin \beta}=\frac{B}{\sin \alpha}$
$\sin \alpha=\frac{B}{R} \sin \theta$
$\tan \alpha=\frac{S N}{O P+P N}=\frac{B \sin \theta}{A+B \cos \theta}$
चित्र में दर्शाये अनुसार, साम्यावस्था में चार बल किसी बिन्दु $P$ पर आरोपित हैं। बल $F_1$ का बल $F_2$ के साथ अनुपात $1: x$ है, जहाँ $x =............$ होगा।
एक सदिश $\hat i + \hat j + \sqrt 2 \,\hat k$ द्वारा $X, Y$ तथा $Z$ अक्षों के साथ बनाये गये कोण क्रमश: होंगे
$x-y$ तल में, एक सदिश $y$-अक्ष के साथ $30^{\circ}$ का कोण बनाता है। सदिश के $y$-घटक का परिमाण $2 \sqrt{3}$ है। सदिश के $\mathrm{x}$-घटक का परिमाण होगा:
सदिश $\mathop A\limits^ \to $, $x, y$ तथा $z$ अक्ष के साथ समान कोण बनाता है। इसके घटकों के मान ($\mathop A\limits^ \to $ के परिमाण के पदों में) होंगे
यदि वेग का $Y$ घटक $20$ तथा $X$ घटक $10$ है। इस क्षण पर क्षैतिज से वस्तु की गति की दिशा होगी