यदि $|\,\mathop A\limits^ \to + \mathop B\limits^ \to \,|\, = \,|\mathop A\limits^ \to \,| + |\,\mathop B\limits^ \to \,|$, तब $\mathop A\limits^ \to $तथा $\mathop B\limits^ \to $ के बीच का कोण ....... $^o$ होगा
$90$
$120$
$0$
$60$
दो सदिशों के परिणामी के अधिकतम होने के लिए, उनके मध्य कितना कोण ....... $^o$ होना चाहिए
सदिश $\overrightarrow{ A }$ और $\overrightarrow{ B } .$ इस प्रकार हैं कि $|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|$ इन दो सदिशों के बीच का कोण है
दो बलों, जिनमें प्रत्येक का परिमाण $F$ है, का परिणामी भी $F$ हो तो दोनों बलों के बीच कोण ....... $^o$ है
निम्न में से कौन से सम्बन्ध दो इकाई सदिशों $\hat{ A }$ व $\hat{ B }$ के लिए सत्य है, यदि $\hat{ A }$ व $\hat{ B }$ परस्पर $\theta$ कोण बनाते है ?
सदिश $\mathop A\limits^ \to ,\,\mathop B\limits^ \to $ व $\mathop C\limits^ \to $ के परिमाण क्रमश: $12, 5$ तथा $13$ इकाई हैं तथा $\mathop A\limits^ \to + \mathop B\limits^ \to = \mathop C\limits^ \to $ है तो $\mathop A\limits^ \to $ व $\mathop B\limits^ \to $ के बीच कोण होगा