निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$
 

Vedclass pdf generator app on play store
Vedclass iOS app on app store
${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${{x_i} - \bar x}$ ${\left( {{x_i} - \bar x} \right)^2}$ ${f_i}{\left( {{x_i} - \bar x} \right)^2}$
$6$ $2$ $12$ $-13$ $169$ $338$
$10$ $4$ $40$ $-9$ $81$ $324$
$14$ $7$ $98$ $-5$ $25$ $175$
$18$ $12$ $216$ $-1$ $1$ $12$
$24$ $8$ $192$ $5$ $25$ $200$
$28$ $4$ $112$ $9$ $81$ $324$
$30$ $3$ $90$ $11$ $121$ $363$
  $40$ $760$     $1736$

Here, $N = 40,\sum\limits_{i = 1}^7 {{f_1}{x_1}}  = 760$

$\therefore \bar x = \frac{{\sum\limits_{i = 1}^7 {{f_1}{x_1}} }}{N} = \frac{{760}}{{40}} = 19$

Variance $ = \left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_1}{{\left( {{x_1} - \bar x} \right)}^2} = } \frac{1}{{40}} \times 1736 = 43.4$

Similar Questions

यदि $50$ प्रेक्षणों $x _{1}, x _{2} \ldots, x _{50}$ का माध्य तथा मानक विचलन दोनों $16$ है, तो $\left(x_{1}-4\right)^{2},\left(x_{2}-4\right)^{2}, \ldots \cdots$ $\left( x _{50}-4\right)^{2}$ का माध्य है

  • [JEE MAIN 2019]

पाँच प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $4$ तथा $5.20$ है। यदि तीन प्रेक्षण $3,4$ तथा $4$ हो, तो अन्य दो प्रेक्षणों के अन्तर का निरपेक्ष मान होगा

  • [JEE MAIN 2019]

प्राप्तांकों के दिये गये बंटन का माध्य $35.16$ तथा मानक विचलन $19.76$ है, तब प्रसरण गुणांक है

दो आंकड़ा समुच्चय, जिनमें से प्रत्येक में $5$ अवयव हैं के प्रसरण $4$ तथा $5$ हैं तथा उनके तदनुरूपी माध्य क्रमशः $2$ तथा $4$ हैं। मिश्रित आँकड़ा-समुच्चय का प्रसरण है

  • [AIEEE 2010]

$15$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $8$ और $3$ पाया गया है। इसकी पुन जॉच करने पर यह पाया गया की, प्रेक्षणों में 20 को 5 के रूप में गलत पड़ा गया था, तब सही प्रसरण बराबर है -

  • [JEE MAIN 2022]