આપેલ આવૃત્તિ વિતરણ માટે મધ્યક અને વિચરણ શોધો.

વર્ગ 

$0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $50-180$ $180-210$

આવૃત્તિ

$2$ $3$ $5$ $10$ $3$ $5$ $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class

Frequency

 ${f_i}$

Mid-point

 ${x_i}$

${y_i} = \frac{{{x_i} - 105}}{{30}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$0-30$ $2$ $15$ $-3$ $9$ $-6$ $18$
$30-60$ $3$ $45$ $-2$ $4$ $-6$ $12$
$60-90$ $5$ $75$ $-1$ $1$ $-5$ $5$
$90-120$ $10$ $105$ $0$ $0$ $0$ $0$
$120-150$ $3$ $135$ $1$ $1$ $3$ $3$
$150-180$ $5$ $165$ $2$ $4$ $10$ $20$
$180-210$ $2$ $195$ $3$ $9$ $6$ $18$
  $30$       $2$ $76$

Mean, $ \bar x = A + \frac{{\sum\limits_{i = 1}^7 {{f_i}{y_i}} }}{N} \times h$

$ = 105 + \frac{2}{{30}} \times 30 = 105 + 2 = 107$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^7 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^7 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right]$

$=2280-4$

$=2276$

Similar Questions

ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં  પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં  $1$ ઉમેરીએ અને  પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.

  • [JEE MAIN 2021]

એક ડિઝાઇનમાં બનાવેલ વર્તુળોના વ્યાસ (મિમીમાં) નીચે આપ્યા છે : 

વ્યાસ  $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
વર્તુળોની સંખ્યા $15$ $17$ $21$ $22$ $25$
 

વર્તુળોના વ્યાસનું પ્રમાણિત વિચલન અને મધ્યક વ્યાસ શોધો.  

$x$  ના $15$ અવલોકનોના પ્રયોગમાં $\sum x^2 = 2830,\, \sum x = 170 $આ પરિણામ મળે છે. એક અવલોકન $20$ ખોટું મળે છે અને તેના સ્થાને સાચું અવલોકન $30$ મૂકવામાં આવે તો સાચું વિરણ કેટલું થાય ?

જો $ 10$  અવલોકનોનો સરવાળો અને વર્ગનો સરવાળો અનુક્રમે $12$  અને $18 $ હોય તો અવલોકનોનું પ્રમાણિત વિચલન = ……..

વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને દૂર કરવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.