${(1 + x)^n}$ ની વિસ્તરણમાં $p^{th}$ અને ${(p + 1)^{th}}$ પદના સહગુણક અનુક્રમે $p$ અને $q$ હોય તો $p + q = $
$n + 3$
$n + 1$
$n + 2$
$n$
${\left( {1 - \frac{1}{x}} \right)^n}\left( {1 - {x}} \right)^n$ ના વિસ્તરણમાં મધ્યમ પદ મેળવો.
${\left( {x - \frac{1}{{2x}}} \right)^8}$ ના વિસ્તરણમાં ${x^2}$ નો સહગુણક મેળવો.
${\left( {\sqrt 3 + \sqrt[8]{5}} \right)^{256}}$ ના વિસ્તરણમાં પૂર્ણાક પદની સંખ્યા મેળવો.
$\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$ ની કિંમત શોધો.
${\left( {{x^2} - \frac{1}{{3x}}} \right)^9}$ ના વિસ્તરણમાં અચળપદ મેળવો.