7.Binomial Theorem
hard

${(1 + x)^n}$ ની વિસ્તરણમાં $p^{th}$ અને ${(p + 1)^{th}}$ પદના સહગુણક અનુક્રમે $p$ અને $q$ હોય તો $p + q = $

A

$n + 3$

B

$n + 1$

C

$n + 2$

D

$n$

Solution

(b) term $ = {T_p} = {}^n{C_{p – 1}}{(x)^{n – p + 1}}{(1)^{p – 1}} = p$

$(p + 1)^{th}$ term $ = {T_{p + 1}} = {}^n{C_p}{(x)^{n – p}}{(1)^p} = q$

Then, coefficient of $\frac{p}{q} = \frac{{{}^n{C_{p – 1}}}}{{{}^n{C_p}}}$

==> $\frac{p}{q} = \frac{{n!}}{{\left( {p – 1} \right)\,!\,\left( {n – p + 1}\right)\,\,!}}\,.\,\frac{{p\,!\,\,\,\left( {n – p} \right)\,\,!}}{{n\,!}}$

==> $\frac{p}{q} = \frac{p}{{n – p + 1}}$

==> $p + q = n + 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.