सम्मिश्र संख्या $\frac{1+2 i}{1-3 i}$ का मापांक और कोणांक ज्ञात कीजिए।
Let $z=\frac{1+3 i}{1-3 i},$ then
$z=\frac{1+2 i}{1-3 i} \times \frac{1+3 i}{1+3 i}=\frac{1+3 i+2 i+6 i^{2}}{1^{2}+3^{2}}=\frac{1+5 i+6(-1)}{1+9}$
$=\frac{-5+5 i}{10}=\frac{-5}{10}+\frac{5 i}{10}=\frac{-1}{2}+\frac{1}{2} i$
Let $z=r \cos \theta+i r \sin \theta$
i.e., $r \cos \theta=\frac{-1}{2}$ and $r \sin \theta=\frac{1}{2}$
On squaring and adding, we obtain
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{-1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$\Rightarrow r^{2}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
$\Rightarrow r=\frac{1}{\sqrt{2}}$ $[\text { Conventionally, } r>0]$
$\therefore \frac{1}{\sqrt{2}} \cos \theta=\frac{-1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\Rightarrow \cos \theta=\frac{-1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
$\therefore \theta=\pi-\frac{\pi}{4}=\frac{3 \pi}{4}$ [As $\theta$ lies in the $II$ quadrant]
Therefore, the modulus and argument of the given complex number are $\frac{1}{\sqrt{2}}$ and $\frac{3 \pi}{4}$ respectively.
यदि $|z|\, = 4$और $arg\,\,z = \frac{{5\pi }}{6},$तो $z = $
यदि $z = 1 - \cos \alpha + i\sin \alpha $, तब $amp \ z$=
यदि $z =2+3 i$ है, तो $z ^5+(\overline{ z })^5$ बराबर है:
${z_1}$ एक सम्मिश्र संख्या है जिसके लिये $|{z_1}| = 1$ तथा ${z_2}$कोई अन्य सम्मिश्र संख्या है, तब $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
यदि ${z_1} = 10 + 6i,{z_2} = 4 + 6i$ व $z$ एक सम्मिश्र संख्या इस प्रकार है कि $amp\left( {\frac{{z - {z_1}}}{{z - {z_2}}}} \right) = \frac{\pi }{4}$, तो $|z - 7 - 9i|$ का मान है