कोई भी दो सम्मिश्र संख्याओं ${z_1},{z_2}$के लिये $|{z_1} + {z_2}{|^2} = $ $|{z_1}{|^2} + |{z_2}{|^2}$ तब

  • A

    ${\mathop{\rm Re}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$

  • B

    ${\mathop{\rm Im}\nolimits} \left( {\frac{{{z_1}}}{{{z_2}}}} \right) = 0$

  • C

    ${\mathop{\rm Re}\nolimits} ({z_1}{z_2}) = 0$

  • D

    ${\mathop{\rm Im}\nolimits} ({z_1}{z_2}) = 0$

Similar Questions

किसी शून्येत्तर (non-zero) सम्मिश्र संख्या (complex number) $z$ के लिये, माना कि $\arg (z)$ इसके मुख्य कोणांक (principal argument) को दर्शाता है, जहाँ - $\pi<\arg (z) \leq \pi \mid$ तब निम्नलिखित में से कौन सा

(से) कथन असत्य है (हैं)?

$(A)$ $\arg (-1-i)=\frac{\pi}{4}$, जहाँ $i=\sqrt{-1}$

$(B)$ फलन (function) $f: R \rightarrow(-\pi, \pi]$, जो सभी $t \in R$ के लिये $f(t)=\arg (-1+i t)$ के द्वारा परिभाषित है, $R$ के सभी बिंदुओं पर संतत (continuous) है, जहाँ $i=\sqrt{-1}$

$(C)$ किन्ही भी दो शून्येत्तर सम्मिश्र संख्याओं $z_1$ और $z_2$ के लिए $\arg \left(\frac{z_1}{z_2}\right)-\arg \left(z_1\right)+\arg \left(z_2\right)$

$2 \pi$ का एक पूर्णांक गुणज (integer multiple) है

$(D)$ किन्ही भी तीन दी गयी भिन्न (distinct) सम्मिश्र संख्याओं $z_1, z_2$ और $z_3$ के लिये, प्रतिबंध (condition) $\arg \left(\frac{\left(z-z_1\right)\left(z_2-z_3\right)}{\left(z-z_3\right)\left(z_2-z_1\right)}\right)=\pi$, को संतुष्ट करने वाले बिंदु $z$ का बिंदुपथ (locus) एक सरल रेखा (straight line) पर स्थित है

  • [IIT 2018]

निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।

$\frac{1+i}{1-i}$

माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय

$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a  \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$

में अवयवों की संख्या है

  • [JEE MAIN 2023]

यदि $0 < amp{\rm{ (z)}} < \pi {\rm{,}}$तब $amp(z)-amp ( - z) = $

यदि $z = \frac{{ - 2}}{{1 + \sqrt 3 \,i}}$, तो $arg\,(z)$का मान