If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals
If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to
For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is
If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is
The values of $z$for which $|z + i|\, = \,|z - i|$ are