Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$

$=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}}$

$=\frac{4 i}{2}=2 i$

$\therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2$

Similar Questions

If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals

If a complex number $z$ statisfies the equation $x + \sqrt 2 \,\,\left| {z + 1} \right|\,+ \,i\, = \,0,$ then $\left| z \right|$ is equal to

  • [JEE MAIN 2013]

For the complex number $z$, one from $z + \bar z$ and $z\,\bar z$ is

If $z$ is a complex number, then the minimum value of $|z| + |z - 1|$ is

The values of $z$for which $|z + i|\, = \,|z - i|$ are