$\frac{1+i}{1-i}-\frac{1-i}{1+i}$ का मापांक ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1-i)(1+i)}$

$=\frac{1+i^{2}+2 i-1-i^{2}+2 i}{1^{2}+1^{2}}$

$=\frac{4 i}{2}=2 i$

$\therefore\left|\frac{1+i}{1-i}-\frac{1-i}{1+i}\right|=|2 i|=\sqrt{2^{2}}=2$

Similar Questions

निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।

$\frac{1}{1+i}$

यदि सम्मिश्र संख्याओं ${z_1}$ तथा  ${z_2}$ के लिये $arg({z_1}/{z_2}) = 0,$तब $|{z_1} - {z_2}|$ =

यदि $\frac{{2{z_1}}}{{3{z_2}}}$ पूर्णतया अधिकल्पित संख्या हो, तब $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$का मान  है   

मापांक और कोणांक ज्ञात कीजिए

$z=-1-i \sqrt{3}$

यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................

  • [JEE MAIN 2024]