निम्नलिखित सम्मिश्र संख्याओं का मापांक एवं कोणांक ज्ञात कीजिए।
$\frac{1}{1+i}$
यदि सम्मिश्र संख्याओं ${z_1}$ तथा ${z_2}$ के लिये $arg({z_1}/{z_2}) = 0,$तब $|{z_1} - {z_2}|$ =
यदि $\frac{{2{z_1}}}{{3{z_2}}}$ पूर्णतया अधिकल्पित संख्या हो, तब $\left| {\frac{{{z_1} - {z_2}}}{{{z_1} + {z_2}}}} \right|$का मान है
मापांक और कोणांक ज्ञात कीजिए
$z=-1-i \sqrt{3}$
यदि $|1-i|^x=2^x$ के हलों की संख्या $\alpha$ है तथा $\beta=\left(\frac{|\mathrm{z}|}{\arg (\mathrm{z})}\right)$ है, जहाँ $\mathrm{z}=\frac{\pi}{4}(1+\mathrm{i})^4\left(\frac{1-\sqrt{\pi} \mathrm{i}}{\sqrt{\pi}+\mathrm{i}}+\frac{\sqrt{\pi}-\mathrm{i}}{1+\sqrt{\pi} \mathrm{i}}\right), \mathrm{i}=\sqrt{-1}$ है, तो रेखा $4 x-3 y=7$ से बिंदु $(\alpha, \beta)$ की दूरी है................