$6$ लाल रंग की, $5$ सफेद रंग की और $5$ नीले रंग की गेंदों में से $9$ गेंदों के चुनने के तरीकों की संख्या ज्ञात कीजिए, यदि प्रत्येक संग्रह में प्रत्येक रंग की $3$ गेंदें हैं।
There are a total of $6$ red balls, $5$ white balls, and $4$ blue balls.
$9$ balls have to be selected in such a way that each selection consists of $3$ balls of each colour. Here,
$3$ balls can be selected from $6$ red balls in $^{6} C_{3}$ ways.
$3$ balls can be selected from $5$ white balls in $^{5} C_{3}$ ways.
$3$ balls can be selected from $5$ blue balls in $^{5} C_{3}$ ways.
Thus, by multiplication principle, required number of ways of selecting $9$ balls.
$=^{6} C_{3} \times^{5} C_{3} \times^{5} C_{3}=\frac{6 !}{3 ! 3 !} \times \frac{5 !}{3 ! 2 !} \times \frac{5 !}{3 ! 2 !}$
$=\frac{6 \times 5 \times 4 \times 3 !}{3 ! \times 3 \times 2} \times \frac{5 \times 4 \times 3 !}{3 \times 2 \times 1} \times \frac{5 \times 4 \times 3 !}{3 ! \times 2 \times 1}$
$=20 \times 10 \times 10=2000$
$(2n + 1)$ पुस्तकों के समुच्चय से एक विद्यार्थी अधिकतम $n$ पुस्तकों का चयन कर सकता है। यदि उसके द्वारा एक पुस्तक कुल $63$ भिन्न भिन्न प्रकारों से चयन की जाती है, तब $n$ का मान होगा
एक व्यक्ति $X$ के $7$ मित्र हैं, जिनमें $4$ महिलाएँ हैं तथा $3$ पुरूष हैं, उसकी पत्नी $Y$ के भी $7$ मित्र हैं, जिनमें $3$ महिलाएँ तथा $4$ पुरुष हैं। यह माना गया कि $X$ तथा $Y$ का कोई उभयनिष्ठ (common) मित्र नहीं है। तो उन तरीकों की संख्या जिनमें $X$ तथा $Y$ एक साथ $3$ महिलाओं तथा $3$ पुरूषों को पार्टी पर बुलाएं कि $X$ तथा $Y$ प्रत्येक कें तीन-तीन मित्र आयें, है:
माना समुच्चयों $\mathrm{A}$ तथा $\mathrm{B}$ में अवयवों की संख्या क्रमशः पाँच तथा दो है। तो $\mathrm{A} \times \mathrm{B}$ के उपसमुच्चयों, जिनमें कम से कम $3$ तथा अधिक से अधिक $6$ अवयव हो, की संख्या है :
${}^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} $ का मान है
यदि $n$ वस्तुओं में से $r$ वस्तुओं को एक साथ लेकर बनने वाले संचयों को $^n{C_r}$ द्वारा प्रदर्शित किया जाये, तो व्यंजक $^n{C_{r + 1}} + {\,^n}{C_{r - 1}} + \,2 \times {\,^n}{C_r}$ का मान होगा