निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए
${x_i}$ | $3$ | $8$ | $13$ | $18$ | $25$ |
${f_i}$ | $7$ | $10$ | $15$ | $10$ | $6$ |
Let us form the following Table :
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${x_i}^2$ | ${f_i}{x_i}^2$ |
$3$ | $7$ | $21$ | $9$ | $63$ |
$8$ | $10$ | $80$ | $64$ | $640$ |
$13$ | $15$ | $195$ | $169$ | $2535$ |
$18$ | $10$ | $180$ | $324$ | $3240$ |
$23$ | $6$ | $138$ | $529$ | $3174$ |
$48$ | $614$ | $9652$ |
Now, by formula $(3),$ we have
$\sigma = \frac{1}{N}\sqrt {N\sum {{f_i}x_i^2 - {{\left( {\sum {{f_i}{x_i}} } \right)}^2}} } $
$=\frac{1}{48} \sqrt{48 \times 9652-(614)^{2}}$
$=\frac{1}{48} \sqrt{463296-376996}$
$=\frac{1}{48} \times 293.77=6.12$
Therefore, Standard deviation $(c)=6.12$
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
तीन के प्रथम $10$ गुणज
माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है
माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है
एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$
$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।