निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए

${x_i}$ $3$ $8$ $13$ $18$ $25$
${f_i}$ $7$ $10$ $15$ $10$ $6$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let us form the following Table :

${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${x_i}^2$ ${f_i}{x_i}^2$
$3$ $7$ $21$ $9$ $63$
$8$ $10$ $80$ $64$ $640$
$13$ $15$ $195$ $169$ $2535$
$18$ $10$ $180$ $324$ $3240$
$23$ $6$ $138$ $529$ $3174$
  $48$ $614$   $9652$

Now, by formula $(3),$ we have

$\sigma  = \frac{1}{N}\sqrt {N\sum {{f_i}x_i^2 - {{\left( {\sum {{f_i}{x_i}} } \right)}^2}} } $

$=\frac{1}{48} \sqrt{48 \times 9652-(614)^{2}}$

$=\frac{1}{48} \sqrt{463296-376996}$

$=\frac{1}{48} \times 293.77=6.12$

Therefore, Standard deviation $(c)=6.12$

Similar Questions

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

माना प्रेक्षण $x _{ i }(1 \leq i \leq 10)$ समीकरणों $\sum_{ i =1}^{10}\left( x _{ i }-5\right)=10$ तथा $\sum_{ i =1}^{10}\left( x _{ i }-5\right)^{2}=40$ को संतुष्ट करते है। यदि $\mu$ तथा $\lambda$ प्रेक्षणों $x _{1}-3, x _{2}-3, \ldots, x _{10}-3$ के क्रमशः माध्य तथा प्रसरण है, तो क्रमित युग्म $(\mu, \lambda)$ बराबर है 

  • [JEE MAIN 2020]

माना $6$ प्रेक्षणों $\mathrm{a}, \mathrm{b}, 68,44,48,60$ के माध्य तथा प्रसरण क्रमशः $55$ तथा $194$ हैं। यदि $\mathrm{a}>\mathrm{b}$ है। तो $\mathrm{a}+3 \mathrm{~b}$ बराबर है

  • [JEE MAIN 2024]

एक विद्यार्थी द्वारा $10$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $15$ तथा $15$ निकाले गए। विद्यार्थी ने एक परीक्षण $15$ को गलती से $25$ लिया। तो सही मानक विचलन है $...........$

  • [JEE MAIN 2022]

$20$ प्रेक्षणों का प्रसरण $5$ है। यदि प्रत्येक प्रेक्षण को $2$ से गुणा किया गया हो तो प्राप्त प्रेक्षणों का प्रसरण ज्ञात कीजिए।