- Home
- Standard 11
- Mathematics
13.Statistics
medium
निम्नलिखित आँकडों के लिए मानक विचलन ज्ञात कीजिए
${x_i}$ | $3$ | $8$ | $13$ | $18$ | $25$ |
${f_i}$ | $7$ | $10$ | $15$ | $10$ | $6$ |
A
$6.12$
B
$6.12$
C
$6.12$
D
$6.12$
Solution
Let us form the following Table :
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${x_i}^2$ | ${f_i}{x_i}^2$ |
$3$ | $7$ | $21$ | $9$ | $63$ |
$8$ | $10$ | $80$ | $64$ | $640$ |
$13$ | $15$ | $195$ | $169$ | $2535$ |
$18$ | $10$ | $180$ | $324$ | $3240$ |
$23$ | $6$ | $138$ | $529$ | $3174$ |
$48$ | $614$ | $9652$ |
Now, by formula $(3),$ we have
$\sigma = \frac{1}{N}\sqrt {N\sum {{f_i}x_i^2 – {{\left( {\sum {{f_i}{x_i}} } \right)}^2}} } $
$=\frac{1}{48} \sqrt{48 \times 9652-(614)^{2}}$
$=\frac{1}{48} \sqrt{463296-376996}$
$=\frac{1}{48} \times 293.77=6.12$
Therefore, Standard deviation $(c)=6.12$
Standard 11
Mathematics
Similar Questions
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
${x_i}$ | $6$ | $10$ | $14$ | $18$ | $24$ | $28$ | $30$ |
${f_i}$ | $2$ | $4$ | $7$ | $12$ | $8$ | $4$ | $3$ |
medium
माना बंटन
$X_i$ | $0$ | $1$ | $2$ | $3$ | $4$ | $5$ |
$f_i$ | $k+2$ | $2k$ | $K^{2}-1$ | $K^{2}-1$ | $K^{2}-1$ | $k-3$ |
जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है