निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
Presenting the data in tabular form (Table), we get
${x_i}$ | ${f_i}$ | ${f_i}{x_i}$ | ${{x_i} - \bar x}$ | ${\left( {{x_i} - \bar x} \right)^2}$ | ${f_i}{\left( {{x_i} - \bar x} \right)^2}$ |
$4$ | $3$ | $12$ | $-10$ | $100$ | $300$ |
$8$ | $5$ | $40$ | $-6$ | $36$ | $180$ |
$11$ | $9$ | $99$ | $-3$ | $9$ | $81$ |
$17$ | $5$ | $85$ | $3$ | $9$ | $45$ |
$20$ | $4$ | $80$ | $6$ | $36$ | $144$ |
$24$ | $3$ | $72$ | $10$ | $100$ | $300$ |
$32$ | $1$ | $32$ | $18$ | $324$ | $324$ |
$30$ | $420$ | $1374$ |
$N = 30,\sum\limits_{i = 1}^7 {{f_i}{x_i}} = 420,\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2} = 1374} $
Therefore $\bar x = \frac{{\sum\limits_{i = 1}^7 {{f_i}{x_i}} }}{N} = \frac{1}{{30}} \times 420 = 14$
Hence Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
$\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $
and Standard deviation $\left( \sigma \right) = \sqrt {45.8} = 6.77$
$20$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ पाये गये। पुनः जाँच करने पर पाया गया कि एक प्रेक्षण $9$ गलत था सही प्रेक्षण $11$ था। तो सही प्रसरण है
निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।
प्रथम $n$ प्राकृत संख्याएँ
मान लीजिये की $n \geq 3$ एक प्राकृत संख्या है। दी गयी संख्याओं की सूची $x_1, x_2, \ldots, x_n$ का औसत तथा मानक विचलन क्रमानुसार $\mu$ और $\sigma$ है। एक नयीसंख्याओं की सूची $y_1, y_2, \ldots, y_n$ इस प्रकार बनाई जाती हैं कि $y_1=\frac{x_1+x_2}{2}, y_2=\frac{x_1+x_2}{2}$ और प्रत्येक $j=3,4, \ldots, n$ के लिए $y_j=x_j$ । यदि नयी सूची का औसत तथा मानक विचलन क्रमानुसार $\hat{\mu}$ और $\hat{\sigma}$ है तो निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य है?
माना बारंबारता बंटन
$\mathrm{x}$ | $\mathrm{x}_{1}=2$ | $\mathrm{x}_{2}=6$ | $\mathrm{x}_{3}=8$ | $\mathrm{x}_{4}=9$ |
$\mathrm{f}$ | $4$ | $4$ | $\alpha$ | $\beta$ |
के माध्य तथा प्रसरण क्रमशः $6$ तथा $6.8$ हैं। यदि $x _{3}$ को $8$ से $7$ कर दिया जाए, तो नये आँकड़ों का माध्य होगा