$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$

$\therefore$ First term, $a=203$

Last term, $I=399$

Common difference, $d=7$

Let the number of terms of the $A.P.$ be $n.$

$\therefore a_{n}=399=a+(n-1) d$

$\Rightarrow 399=203+(n-1) 7$

$\Rightarrow 7(n-1)=196$

$\Rightarrow n-1=28$

$\Rightarrow n=29$

$\therefore S_{29}=\frac{29}{2}(203+399)$

$=\frac{29}{2}(602)$

$=(29)(301)$

$=8729$

Thus, the required sum is $8729 .$

Similar Questions

माना कि अनुक्रम $a_{n}$ निम्नलिखित रूप में परिभाषित है

${a_1} = 1,{a_n} = {a_{n - 1}} + 2$ for $n\, \ge \,2$

तो अनुक्रम के पाँच पद ज्ञात कीजिए तथा संगत श्रेणी लिखिए।

यदि $\frac{a^{n}+b^{n}}{a^{n-1}+b^{n-1}}, a$ तथा $b$ के मध्य समांतर माध्य हो तो $n$ का मान ज्ञात कीजिए।

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=2^{n}$

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=n \frac{n^{2}+5}{4}$

माना $a , b$ दो शून्येत्तर वास्तविक संख्याएँ हैं। एक समीकरण $x^2-8 a x+2 a=0$ के मूल $p$ तथा $r$ हैं और समीकरण $x ^2+12 bx +6 b =0$, के मूल $q$ तथा $s$ हैं, इस प्रकार कि $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ A.P. में हैं,तो $a^{-1}-b^{-1}$ बराबर है $................$

  • [JEE MAIN 2022]