$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |
The numbers lying between $200$ and $400 ,$ which are divisible by $7,$ are $203,210,217 \ldots .399$
$\therefore$ First term, $a=203$
Last term, $I=399$
Common difference, $d=7$
Let the number of terms of the $A.P.$ be $n.$
$\therefore a_{n}=399=a+(n-1) d$
$\Rightarrow 399=203+(n-1) 7$
$\Rightarrow 7(n-1)=196$
$\Rightarrow n-1=28$
$\Rightarrow n=29$
$\therefore S_{29}=\frac{29}{2}(203+399)$
$=\frac{29}{2}(602)$
$=(29)(301)$
$=8729$
Thus, the required sum is $8729 .$
दो अंकों की उन सभी संख्याओं का योगफल ज्ञात कीजिए, जिनको $4$ से विभजित करने पर शेषफल $1$ हो।
$a$ व $b$ के बीच में $n$ समान्तर माध्यों का योग है
यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा
एक समान्तर श्रेणी के प्रथम चार पदों का योग $56$ है। अन्तिम चार पदों का योग $112$ है। यदि इसका प्रथम पद $11$ हो, तो पदों की संख्या है
समान्तर श्रेढ़ी $b _{1}, b _{2}, \ldots, b _{ m }$ का सार्वअन्तर, समान्तर श्रेढ़ी $a _{1}, a _{2}, \ldots, a _{ n }$ के सार्वअन्तर से $2$ अधिक है यदि $a _{40}=- 159$, $a _{100}=-399$ तथा $b _{100}= a _{70}$, तो $b _{1}$ बराबर है