Find the sum of odd integers from $1$ to $2001 .$
The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$
This sequence forms an $A.P.$
Here, first term, $a=1$
Common difference, $d=2$
Here, $a+(n-1) d=2001$
$\Rightarrow 1+(n-1)(2)=2001$
$\Rightarrow 2 n-2=2000$
$\Rightarrow n=1001$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=1001 \times 1001$
$=1002001$
Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$
The solution of the equation $(x + 1) + (x + 4) + (x + 7) + ......... + (x + 28) = 155$ is
Let $X$ be the set consisting of the first $2018$ terms of the arithmetic progression $1,6,11$,
. . . .and $Y$ be set consisting of the first $2018$ terms of the arithmetic progression $9, 16, 23$,. . . . . Then, the number of elements in the set $X \cup Y$ is. . . .
Sum of the first $p, q$ and $r$ terms of an $A.P.$ are $a, b$ and $c,$ respectively. Prove that $\frac{a}{p}(q-r)+\frac{b}{q}(r-p)+\frac{c}{r}(p-q)=0$
If the sum of first $p$ terms of an $A.P.$ is equal to the sum of the first $q$ terms, then find the sum of the first $(p+q)$ terms.
If $p,\;q,\;r$ are in $A.P.$ and are positive, the roots of the quadratic equation $p{x^2} + qx + r = 0$ are all real for