Find the sum of odd integers from $1$ to $2001 .$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$

This sequence forms an $A.P.$

Here, first term, $a=1$

Common difference, $d=2$

Here, $a+(n-1) d=2001$

$\Rightarrow 1+(n-1)(2)=2001$

$\Rightarrow 2 n-2=2000$

$\Rightarrow n=1001$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$

$=\frac{1001}{2}[2+1000 \times 2]$

$=1001 \times 1001$

$=1002001$

Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$

Similar Questions

If the sum of the roots of the equation $a{x^2} + bx + c = 0$ be equal to the sum of the reciprocals of their squares, then $b{c^2},\;c{a^2},\;a{b^2}$ will be in

  • [IIT 1976]

What is the sum of all two digit numbers which give a remainder of $4$ when divided by $6$ ?

If $\log _{3} 2, \log _{3}\left(2^{x}-5\right), \log _{3}\left(2^{x}-\frac{7}{2}\right)$ are in an arithmetic progression, then the value of $x$ is equal to $.....$

  • [JEE MAIN 2021]

Let the coefficients of the middle terms in the expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and $\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an $A.P.$ If $d$ is the common difference of this $A.P.$, then $50-\frac{2 d}{\beta^{2}}$ is equal to.

  • [JEE MAIN 2022]

Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to

  • [JEE MAIN 2019]