$1$ से $2001$ तक के विषम पूर्णांकों का योग ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$

This sequence forms an $A.P.$

Here, first term, $a=1$

Common difference, $d=2$

Here, $a+(n-1) d=2001$

$\Rightarrow 1+(n-1)(2)=2001$

$\Rightarrow 2 n-2=2000$

$\Rightarrow n=1001$

$S_{n}=\frac{n}{2}[2 a+(n-1) d]$

$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$

$=\frac{1001}{2}[2+1000 \times 2]$

$=1001 \times 1001$

$=1002001$

Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$

Similar Questions

माना कि $X$ समान्तर श्रेणी (arithmetic progression) $1, 6, 11, ...$ के प्रथम $2018$ पदों का समुच्चय (set) है, और $Y$ समान्तर श्रेणी $9,16,23, \ldots$ के प्रथम $2018$ पदों का समुच्चय है। तब समुच्चय $X \cup Y$ में अवयवों (elements) की संख्या है................|

  • [IIT 2018]

यदि किसी समांतर श्रेणी की तीन संख्याओं का योग $24$ है तथा उनका गुणनफल $440$ है, तो संख्याएँ ज्ञात कीजिए।

यदि ${a^2},\;{b^2},\;{c^2}$ समान्तर श्रेणी में हों, तो ${(b + c)^{ - 1}},\;{(c + a)^{ - 1}}$ व ${(a + b)^{ - 1}}$ होंगे

अनुक्रम में प्रत्येक के प्रथम पाँच पद लिखिये, जिनका $n$ वाँ पद दिया गया है

$a_{n}=2^{n}$

$1$ व $100$ के बीच $3$ के गुणज वाली प्राकृत संख्याओं का योग है