$1$ से $2001$ तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$
This sequence forms an $A.P.$
Here, first term, $a=1$
Common difference, $d=2$
Here, $a+(n-1) d=2001$
$\Rightarrow 1+(n-1)(2)=2001$
$\Rightarrow 2 n-2=2000$
$\Rightarrow n=1001$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=1001 \times 1001$
$=1002001$
Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$
यदि किसी समान्तर अनुक्रम की तीन संख्याओं का योग $15$ एवं उनके वर्गों का योग $83$ हो, तो संख्यायें हैं
$p , q \in R , q > 0$, के लिए वास्तविक मान फलन $f ( x )=( x - p )^2- q , x \in R$ का विचार कीजिए। माना $a _1, a _2, a _3$ तथा $a _4$ एक धनात्मक सार्व अंतर की संमातर श्रेढ़ी में हैं तथा इनका माध्य $p$ है। यदि $i=1,2,3,4$ के लिए $\left|f\left(a_i\right)\right|=500$ है, तो $f ( x )=0$ के मूलों का निरपेक्ष अंतर है $...........$
एक निर्माता घोषित करता है कि उसकी मशीन जिसका मूल्य $15625$ रुपये है, हर वर्ष $20 \%$ की दर से उसका अवमूल्यन होता है। $5$ वर्ष बाद मशीन का अनुमानित मूल्य ज्ञात कीजिए।
अनुक्रम के पाँच पद लिखिए तथा संगत श्रेणी ज्ञात कीजिए
$a_{1}=3, a_{n}=3 a_{n-1}+2$ सभी $n>1$ के लिए
तीन घनात्मक पूर्णाकों $\mathrm{p}, \mathrm{q}, \mathrm{r}$, के लिए $\mathrm{x}^{\mathrm{pq}}=\mathrm{y}^{\mathrm{qr}}=\mathrm{z}^{\mathrm{p}^2 \mathrm{r}}, \mathrm{r}=\mathrm{pq}+1$ हैं तथा $3,3 \log _{\mathrm{y}} \mathrm{x}$, $3 \log _z y, 7 \log _x z$ एक $A.P.$ में है, जिसका सार्व अंतर $\frac{1}{2}$ है। तो $\mathrm{r}-\mathrm{p}-\mathrm{q}$ बराबर है