$1$ से $2001$ तक के विषम पूर्णांकों का योग ज्ञात कीजिए।
The odd integers from $1$ to $2001$ are $1,3,5 \ldots \ldots .1999,2001$
This sequence forms an $A.P.$
Here, first term, $a=1$
Common difference, $d=2$
Here, $a+(n-1) d=2001$
$\Rightarrow 1+(n-1)(2)=2001$
$\Rightarrow 2 n-2=2000$
$\Rightarrow n=1001$
$S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\therefore S_{n}=\frac{1001}{2}[2 \times 1+(1001-1) \times 2]$
$=\frac{1001}{2}[2+1000 \times 2]$
$=1001 \times 1001$
$=1002001$
Thus, the sum of odd numbers from $1$ to $2001$ is $1002001 .$
श्रेणी $101 + 99 + 97 + ..... + 47$ में पदों की संख्या है
जयराम एक मकान को $15000$ रूपये मूल्य पर खरीदता है तथा $5000$ रूपये एक बार में जमा करता है। शेष रूपयों को $1000$ रूपये वार्षिक किस्त पर $10\%$ ब्याज के साथ चुकाता है, तब वह ................ रूपये चुकायेगा
यदि एक समान्तर श्रेणी का प्रथम पद $2$ तथा सार्वअन्तर $4$ हो, तो उसके $40$ पदों का योग होगा|
दर्शाइए कि किसी समांतर श्रेणी के $(m+n)$ वें तथा $(m-n)$ वें पदों का योग $m$ वें पद का दुगुना है।
यदि किसी समान्तर श्रेणी के $11$ वें पद का दुगना, उसके $21$ वें पद के $7$ गुने के बराबर हो, तो $25$ वाँ पद होगा