Find the sum of the following series up to n terms:

$5+55+555+\ldots$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$5+55+555+\ldots$

Let $S_{n}=5+55+555+\ldots .$ to $n$ terms

$=\frac{5}{9}[9+99+999+\ldots \ldots \text { to } n \text { terms }]$

$=\frac{5}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { to } n \text { terms }\right]$

$=\frac{5}{9}[\left(10+10^{2}+10^{3}+\text { to } n \text { terms }\right)$

$-(1+1+\ldots \text { to } n \text { terms })]$

$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$

$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$

$=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}$

Similar Questions

If $y = x - {x^2} + {x^3} - {x^4} + ......\infty $, then value of $x$ will be

If three successive terms of a$G.P.$ with common ratio $r(r>1)$ are the lengths of the sides of a triangle and $[\mathrm{r}]$ denotes the greatest integer less than or equal to $r$, then $3[r]+[-r]$ is equal to :

  • [JEE MAIN 2024]

The first term of a $G.P.$ whose second term is $2$ and sum to infinity is $8$, will be

If ${(p + q)^{th}}$ term of a $G.P.$ be $m$ and ${(p - q)^{th}}$ term be $n$, then the ${p^{th}}$ term will be

If $S$ is the sum to infinity of a $G.P.$, whose first term is $a$, then the sum of the first $n$ terms is