Find the sum of the following series up to n terms:
$5+55+555+\ldots$
$5+55+555+\ldots$
Let $S_{n}=5+55+555+\ldots .$ to $n$ terms
$=\frac{5}{9}[9+99+999+\ldots \ldots \text { to } n \text { terms }]$
$=\frac{5}{9}\left[(10-1)+\left(10^{2}-1\right)+\left(10^{3}-1\right)+\ldots \text { to } n \text { terms }\right]$
$=\frac{5}{9}[\left(10+10^{2}+10^{3}+\text { to } n \text { terms }\right)$
$-(1+1+\ldots \text { to } n \text { terms })]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{10-1}-n\right]$
$=\frac{5}{9}\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$=\frac{50}{81}\left(10^{n}-1\right)-\frac{5 n}{9}$
The first term of a $G.P.$ is $7$, the last term is $448$ and sum of all terms is $889$, then the common ratio is
If $x > 1,\;y > 1,z > 1$ are in $G.P.$, then $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ are in
The sum of first three terms of a $G.P.$ is $16$ and the sum of the next three terms is
$128.$ Determine the first term, the common ratio and the sum to $n$ terms of the $G.P.$
If $1\, + \,\sin x\, + \,{\sin ^2}x\, + \,...\infty \, = \,4\, + \,2\sqrt 3 ,\,0\, < \,x\, < \,\pi $ then
Find the sum of first $n$ terms and the sum of first $5$ terms of the geometric
series $1+\frac{2}{3}+\frac{4}{9}+\ldots$