ધારોકે ધન સંખ્યાઓ $a_1, a_2, a_3, a_4$ અને $a_5$ સમગુણોત્તર શ્રેણીમાં છે.ધારોકે તેમના મધ્યક અને વિચરણ અનુક્રમે $\frac{31}{10}$ અન $\frac{m}{n}$ છે,જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે.જો તેમના વ્યસ્ત નું મધ્યક $\frac{31}{40}$ અને $a_3+a_4+a_5=14$ હોય, તો $m+n=..........$
$210$
$212$
$213$
$211$
જો $p, q, r $ કોઇ સમગુણોત્તર શ્રેણીમાં હોય અને $ a, b, c $ કોઇ અન્ય સમગુણોત્તર શ્રેણીમાં હોય, તો $cp, bq $ અને $ar$ એ......
$0.\mathop {423}\limits^{\,\,\,\, \bullet \,\,\, \bullet \,} = $
જો $\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{{(2r\, - \,1)}^2}}}\,\, = \,\,\frac{{{\pi ^2}}}{8}} $ હોય, તો $\,\sum\limits_{{\text{r}}\, = \,{\text{1}}}^\infty {\frac{1}{{{r^2}}}\,\, = \,\,.........} $
ધારો કે $\alpha$ અને $\beta$ એ સમીકરણ $p x^2+q x-r=0$ નાં બીજ છે, જ્યાં $p \neq 0$.જે $p, q$ અને $r$ એ એક અચળ ન હોય તેવી ગુણોત્તર શ્રેણી ($G.P.$) ના ક્રમિક પદો હોય અને $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$ હોય, તો $(\alpha-\beta)^2$ નું મૂલ્ય .............. છે.
સમગુણોત્તર શ્રેણી $2,8,32, \ldots$ $n$ પદ સુધી, માટે કયું પદ $131072$ હશે ?