$\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

We have ${T_{r + 1}} = {\,^6}{C_r}{\left( {\frac{3}{2}{x^2}} \right)^{6 - r}}\left( { - \frac{1}{{3x}}} \right)$

$ = {\,^6}{C_r}{\left( {\frac{3}{2}} \right)^{6 - r}}{\left( {{x^2}} \right)^{6 - r}}{( - 1)^r}{\left( {\frac{1}{x}} \right)^r}\left( {\frac{1}{{{3^r}}}} \right)$

$ = {( - 1)^r}{\quad ^6}{C_r}\quad \frac{{{{(3)}^{6 - 2r}}}}{{{{(2)}^{6 - r}}}}\quad {x^{12 - 3r}}$

The term will be independent of $x$ if the index of $x$ is zero, i.e., $12-3 r=0 .$ Thus, $r=4$

Hence $5^{\text {th }}$ term is independent of $x$ and is given by ${( - 1)^4}{\,^6}{C_4}\frac{{{{(3)}^{6 - 8}}}}{{{{(2)}^{6 - 4}}}} = \frac{5}{{12}}$

Similar Questions

यदि $\left(x+x^{\log _{2} x}\right)^{7}$ के प्रसार में चौथा पद $4480$ है, तो $x ( x \in N )$ का मान है

  • [JEE MAIN 2021]

निम्नलिखित के प्रसार में व्यापक पद लिखिए

$\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ के प्रसार में $13$ वाँ पद ज्ञात कीजिए।

यदि ${(a + b)^n}$ के प्रसार में $\frac{{{T_2}}}{{{T_3}}}$ व ${(a + b)^{n + 3}}$ के प्रसार में $\frac{{{T_3}}}{{{T_4}}}$ समान हैं, तब $n=$

$m$ का धनात्मक मान ज्ञात कीजिए जिसके लिए $(1+x)^{m}$ के प्रसार में $x^{2}$ का गुणांक $6$ हो।

${\left( {x + \frac{2}{{{x^2}}}} \right)^{15}}$ के प्रसार में $x$ से स्वतंत्र पद है