$\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$ ના વિસ્તરણનું અચળ પદ શોધો.
We have ${T_{r + 1}} = {\,^6}{C_r}{\left( {\frac{3}{2}{x^2}} \right)^{6 - r}}\left( { - \frac{1}{{3x}}} \right)$
$ = {\,^6}{C_r}{\left( {\frac{3}{2}} \right)^{6 - r}}{\left( {{x^2}} \right)^{6 - r}}{( - 1)^r}{\left( {\frac{1}{x}} \right)^r}\left( {\frac{1}{{{3^r}}}} \right)$
$ = {( - 1)^r}{\quad ^6}{C_r}\quad \frac{{{{(3)}^{6 - 2r}}}}{{{{(2)}^{6 - r}}}}\quad {x^{12 - 3r}}$
The term will be independent of $x$ if the index of $x$ is zero, i.e., $12-3 r=0 .$ Thus, $r=4$
Hence $5^{\text {th }}$ term is independent of $x$ and is given by ${( - 1)^4}{\,^6}{C_4}\frac{{{{(3)}^{6 - 8}}}}{{{{(2)}^{6 - 4}}}} = \frac{5}{{12}}$
જો $\left(a x-\frac{1}{b x^2}\right)^{13}$ માં $x^7$ નો સહગુણક અને $\left(a x+\frac{1}{b x^2}\right)^{13}$ માં $x^{-5}$ નો સહગુણક સરખા હોય,તો $a^4 b^4=.........$
${\left( {\sqrt 2 \,\, + \,\,\sqrt[4]{3}} \right)^{100}}$ ના વિસ્તરણમાં સંમેય પદોની સંખ્યા મેળવો
${\left( {{x^2} + \frac{2}{x}} \right)^{15}}$ ના વિસ્તરણમાં $x^{15}$ ના સહગુણક અને અચળ પદનો ગુણોત્તર મેળવો.
${(1 + x)^n}{\left( {1 + \frac{1}{x}} \right)^n}$ ના વિસ્તરણમાં $\frac{1}{x}$ નો સહગુણક મેળવો.
ધારોકે $[t]$ એ મહત્તમ પૂર્ણાક $\leq t$ દર્શાવે છે.જો $\left(3 x^2-\frac{1}{2 x^5}\right)^7$ નાં વિસ્તરણમાં અયળ પદ $\alpha$ હોય, તો $[\alpha]=...........$