$\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{6}$ ના વિસ્તરણનું અચળ પદ શોધો.
We have ${T_{r + 1}} = {\,^6}{C_r}{\left( {\frac{3}{2}{x^2}} \right)^{6 - r}}\left( { - \frac{1}{{3x}}} \right)$
$ = {\,^6}{C_r}{\left( {\frac{3}{2}} \right)^{6 - r}}{\left( {{x^2}} \right)^{6 - r}}{( - 1)^r}{\left( {\frac{1}{x}} \right)^r}\left( {\frac{1}{{{3^r}}}} \right)$
$ = {( - 1)^r}{\quad ^6}{C_r}\quad \frac{{{{(3)}^{6 - 2r}}}}{{{{(2)}^{6 - r}}}}\quad {x^{12 - 3r}}$
The term will be independent of $x$ if the index of $x$ is zero, i.e., $12-3 r=0 .$ Thus, $r=4$
Hence $5^{\text {th }}$ term is independent of $x$ and is given by ${( - 1)^4}{\,^6}{C_4}\frac{{{{(3)}^{6 - 8}}}}{{{{(2)}^{6 - 4}}}} = \frac{5}{{12}}$
$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$, માં $x^3$ અને $x^{-13}$ ના સહગુણાકોનો સરવાળો..........................
${\left( {3x - \frac{1}{{{x^2}}}} \right)^{10}}$ then $5^{th}$ ના વિસ્તરણમાં છેલ્લેથી પાંચમું પદ મેળવો
જો ${(x + a)^n}$ ના વિસ્તરણમાં પ્રથમ ,બીજું અને ત્રીજું પદ અનુક્રમે $240, 720$ અને $1080$ હોય , તો $n$ મેળવો.
જો $(1+x)^{m}$ ના વિસ્તરણમાં $x^{2}$ નો સહગુણક $6$ હોય, તો $m$ નું ધન મૂલ્ય શોધો.
$(x+3)^{8}$ માં $x^{5}$ નો સહગુણક શોધો