$\left(\sqrt[3]{x}+\frac{1}{2 \sqrt[3]{x}}\right)^{18}, x>0$ के प्रसार में $x$ से स्वतंत्र पद ज्ञात कीजिए।
We have ${T_{r + 1}} = {\,^{18}}{C_r}{(\sqrt[3]{x})^{18 - r}}{\left( {\frac{1}{{2\sqrt[3]{x}}}} \right)^r}$
$ = {\,^{18}}{C_r}{x^{\frac{{18 - r}}{3}}} \cdot \frac{1}{{{2^r} \cdot {x^{\frac{r}{3}}}}} = {\,^{18}}{C_r}\frac{1}{{{2^r}}} \cdot {x^{\frac{{18 - 2r}}{3}}}$
Since we have to find a term independent of $x$, i.e., term not having $x$, so take $\frac{18-2 r}{3}=0$
We get $r=9 .$ The required term is ${\,^{18}}{C_9}\frac{1}{{{2^9}}}$
$8(x+a)^{n}$ के द्विपद प्रसार के दूसरे, तीसरे और चौथे पद क्रमश: $240,720$ और $1080$ हैं। $x, a$ तथा $n$ ज्ञात कीजिए।
सिद्ध कीजिए कि $(1+x)^{2 n}$ के प्रसार में $x^{n}$ का गुणांक, $(1+x)^{2 n-1}$ के प्रसार में $x^{n}$ के गुणांक का दुगना होता है।
यदि धन पूर्णाकों $m$ तथा $n$ के लिए
$(1-y)^{m}(1+y)^{n}=1+a_{1} y+a_{2} y^{2}+\ldots .+a_{m-n} y^{m+n}$ तथा $a_{1}=a_{2}=10$ हैं, तो $(m+n)$ बराबर है
${(x + a)^n}$ के द्विपद विस्तार में पदों ${x^{n - r}}{a^r}$ तथा ${x^r}{a^{n - r}}$ के गुणांको का अनुपात होगा
${(1 + x)^n}$ के विस्तार में $p$ वें तथा $(p + 1)$ वें पदों के गुणांक क्रमश: $p $ व $q$ हों, तो $p + q = $